IIS_2023_1/malkova_anastasia_lab_6/fit.py
2023-11-17 01:19:07 +04:00

15 lines
447 B
Python

from sklearn.neural_network import MLPRegressor
from scores import MAPE
def random_state_fit(i, x, y, x_test, y_test):
mlr = MLPRegressor(random_state=i, max_iter=2000, n_iter_no_change=20,
activation='relu', alpha=0.01, hidden_layer_sizes=[20, 20], tol=0.0000001)
mlr.fit(x, y)
y_pred = mlr.predict(x_test)
acc = 100 - MAPE(y_test, y_pred)
print('random state', i, "\naccuracy", acc)
return acc