import numpy as np from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense from keras.preprocessing.text import Tokenizer from keras_preprocessing.sequence import pad_sequences # загрузка текста with open('rus.txt', encoding='utf-8') as file: text = file.read() tokenizer = Tokenizer() tokenizer.fit_on_texts([text]) total_words = len(tokenizer.word_index) + 1 input_sequences = [] for line in text.split('\n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] input_sequences.append(n_gram_sequence) max_sequence_length = max([len(x) for x in input_sequences]) input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre') predictors, labels = input_sequences[:, :-1], input_sequences[:, -1] # создание RNN модели model = Sequential() model.add(Embedding(total_words, 100, input_length=max_sequence_length - 1)) model.add(LSTM(150)) model.add(Dense(total_words, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # тренировка модели model.fit(predictors, labels, epochs=200, verbose=1) # генерация текста на основе модели def generate_text(seed_text, next_words, model, max_sequence_length): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre') predicted = np.argmax(model.predict(token_list), axis=-1) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text generated_text = generate_text("Я хочу", 50, model, max_sequence_length) print(generated_text)