import numpy as np from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences # Чтение из файла def load_text(file_path): with open(file_path, encoding='utf-8') as file: return file.read() # Создание токенайзера и последовательностей на основе входного текста def create_tokenizer_and_sequences(text): tokenizer = Tokenizer() tokenizer.fit_on_texts([text]) total_words = len(tokenizer.word_index) + 1 input_sequences = [] for line in text.split('\n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] input_sequences.append(n_gram_sequence) max_sequence_length = max([len(x) for x in input_sequences]) input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre') predictors, labels = input_sequences[:, :-1], input_sequences[:, -1] return tokenizer, total_words, predictors, labels, max_sequence_length # Создание и обучение модели def create_and_train_model(total_words, max_sequence_length, predictors, labels): model = Sequential() model.add(Embedding(total_words, 256, input_length=max_sequence_length - 1)) model.add(LSTM(units=1024)) model.add(Dense(total_words, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(predictors, labels, epochs=100, verbose=1, batch_size=64) return model # Генерация текста def generate_text(seed_text, next_words, model, max_sequence_length, tokenizer): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre') predicted = np.argmax(model.predict(token_list), axis=-1) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text # Использование ранее определенных функций eng_text = load_text('public/text/eng.txt') rus_text = load_text('public/text/rus.txt') tokenizer_eng, total_words_eng, predictors_eng, labels_eng, max_seq_len_eng = create_tokenizer_and_sequences(eng_text) tokenizer_rus, total_words_rus, predictors_rus, labels_rus, max_seq_len_rus = create_tokenizer_and_sequences(rus_text) model_eng = create_and_train_model(total_words_eng, max_seq_len_eng, predictors_eng, labels_eng) model_rus = create_and_train_model(total_words_rus, max_seq_len_rus, predictors_rus, labels_rus) print(generate_text("\"Event Horizon\"", 50, model_eng, max_seq_len_eng, tokenizer_eng)) print(generate_text("\"Горизонт событий\"", 50, model_rus, max_seq_len_rus, tokenizer_rus))