from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures def lin(x_train, x_test, y_train, y_test): plt.scatter(x_test, y_test) model = LinearRegression().fit(x_train, y_train) y_predict = model.intercept_ + model.coef_ * x_test plt.plot(x_test, y_predict, color='red') plt.title('Линейная регрессия') plt.savefig('images/linear.png') plt.show() print('Линейная регрессия') print('Оценка качества:', model.score(x_train, y_train)) def polynom(x_train, y_train): plt.scatter(x_train, y_train) x_poly = PolynomialFeatures(degree=4).fit_transform(x_train) pol_reg = LinearRegression() model = pol_reg.fit(x_poly, y_train) y_predict = pol_reg.predict(x_poly) plt.plot(x_train, y_predict, color='green') plt.title('Полиномиальная регрессия') plt.savefig('images/polynomial.png') plt.show() print('Полиномиальная регрессия') print('Оценка качества:', model.score(x_poly, y_train)) def greb_polynom(x_train, x_test, y_train, y_test): plt.scatter(x_test, y_test) pipeline = Pipeline([("polynomial_features", PolynomialFeatures(degree=4)), ("ridge", Ridge(alpha=1.0))]) model = pipeline.fit(x_train, y_train) y_predict = pipeline.predict(x_test) plt.plot(x_test, y_predict, color='blue') plt.title('Гребневая полиномиальная регрессия') plt.savefig('images/greb_polynom.png') plt.show() print('Гребневая полиномиальная регрессия') print('Оценка качества:', model.score(x_train, y_train))