import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import Perceptron from sklearn.neural_network import MLPClassifier from sklearn.model_selection import train_test_split, learning_curve from sklearn.metrics import accuracy_score # Наполнение искусственными данными rs = np.random.RandomState(42) X, y = make_classification(n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1) # Обучающие и тестовые наборы данных X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=rs) # Список моделей для обучения models = [ ('Персептрон', Perceptron()), ('MLP (10 нейронов)', MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)), ('MLP (100 нейронов)', MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs)) ] fig, axs = plt.subplots(1, len(models), figsize=(12, 4)) # Визуализация графиков for i, (name, model) in enumerate(models): model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) # Построение кривых обуч ения train_sizes, train_scores, valid_scores = learning_curve( model, X, y, train_sizes=[50, 80, 110], cv=5) axs[i].plot(train_sizes, train_scores.mean(axis=1), 'o-', color="r", label="Оценка обучения") axs[i].plot(train_sizes, valid_scores.mean(axis=1), 'o-', color="g", label="Оценка кросс-валидации") axs[i].set_title(f'{name} (Точность: {accuracy:.2f})') axs[i].set_xlabel("Training examples") axs[i].set_ylabel("Score") axs[i].legend(loc="best") axs[i].grid() plt.show()