from sklearn.metrics import mean_absolute_percentage_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline import pandas as pd data = pd.read_csv('boston.csv') X = (data[['CRIM', 'RM', 'RAD']]) y = data['MEDV'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) lin = LinearRegression() polynomial_features = PolynomialFeatures(degree=1) pipeline = Pipeline([("Linear", polynomial_features), ("linear_regression", lin)]) pipeline.fit(X_train, y_train) y_predict = lin.predict(polynomial_features.fit_transform(X_test)) print('Предсказание: ', y_predict) print('Оценка качества:', pipeline.score(X_test, y_test)) print('Ошибка:', mean_absolute_percentage_error(y_test, y_predict))