import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import accuracy_score, classification_report, confusion_matrix # Load data data = pd.read_csv('person_types.csv') # Select variables for the model features = ['HEIGHT', 'WEIGHT', 'ACTIVITY_LEVEL'] # Select relevant columns df = data[features + ['SEX']] # Drop rows with missing values df = df.dropna() # Convert string values to numerical for 'ACTIVITY_LEVEL' le_activity = LabelEncoder() df['ACTIVITY_LEVEL'] = le_activity.fit_transform(df['ACTIVITY_LEVEL']) # Split into features and target variable X = df.drop('SEX', axis=1) y = df['SEX'] # Split into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Standardize features scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # Create and train MLPClassifier model = MLPClassifier(random_state=42) model.fit(X_train_scaled, y_train) # Predict on the test set y_pred = model.predict(X_test_scaled) # Evaluate the model accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) class_report = classification_report(y_test, y_pred) print(f'Accuracy: {accuracy}') print(f'Confusion Matrix:\n{conf_matrix}') print(f'Classification Report:\n{class_report}') # Visualize the results (e.g., a histogram) plt.hist(y_pred, bins=np.arange(3)-0.5, alpha=0.75, color='blue', label='Predicted') plt.hist(y_test, bins=np.arange(3)-0.5, alpha=0.5, color='green', label='Actual') plt.xlabel('Sex') plt.ylabel('Count') plt.xticks([0, 1], ['Female', 'Male']) plt.legend() plt.show()