from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap from sklearn.linear_model import LinearRegression, Ridge from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.datasets import make_moons from sklearn import metrics cm_bright = ListedColormap(['#8B0000', '#FF0000']) cm_bright1 = ListedColormap(['#FF4500', '#FFA500']) def create_moons(): x, y = make_moons(noise=0.3, random_state=0) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.4, random_state=42) linear_regretion(X_train, X_test, y_train, y_test) polynomial_regretion(X_train, X_test, y_train, y_test) ridge_regretion(X_train, X_test, y_train, y_test) def linear_regretion(x_train, x_test, y_train, y_test): model = LinearRegression().fit(x_train, y_train) y_predict = model.intercept_ + model.coef_ * x_test plt.title('Линейная регрессия') print('Линейная регрессия') plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright) plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7) plt.plot(x_test, y_predict, color='red') print('MAE', metrics.mean_absolute_error(y_test, y_predict[:, 1])) print('MSE', metrics.mean_squared_error(y_test, y_predict[:, 1])) plt.show() def polynomial_regretion(x_train, x_test, y_train, y_test): polynomial_features = PolynomialFeatures(degree=3) X_polynomial = polynomial_features.fit_transform(x_train, y_train) base_model = LinearRegression() base_model.fit(X_polynomial, y_train) y_predict = base_model.predict(X_polynomial) plt.title('Полиномиальная регрессия') plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright) plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7) plt.plot(x_train, y_predict, color='blue') plt.show() print('Полиномиальная регрессия') print('MAE', metrics.mean_absolute_error(y_train, y_predict)) print('MSE', metrics.mean_squared_error(y_train, y_predict)) def ridge_regretion(X_train, X_test, y_train, y_test): model = Pipeline([('poly', PolynomialFeatures(degree=3)), ('ridge', Ridge(alpha=1.0))]) model.fit(X_train, y_train) y_predict = model.predict(X_test) plt.title('Гребневая полиномиальная регрессия') plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7) plt.plot(X_test, y_predict, color='blue') plt.show() print('Гребневая полиномиальная регрессия') print('MAE', metrics.mean_absolute_error(y_test, y_predict)) print('MSE', metrics.mean_squared_error(y_test, y_predict)) create_moons()