import numpy as np from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences # Load the text with open('text.txt', 'r', encoding='utf-8') as file: text = file.read() tokenizer = Tokenizer() tokenizer.fit_on_texts([text]) total_words = len(tokenizer.word_index) + 1 # Create the sequence of training data input_sequences = [] for line in text.split('\n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i+1] input_sequences.append(n_gram_sequence) # Padding sequences max_sequence_length = max([len(seq) for seq in input_sequences]) input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre') # Create input and output data X, y = input_sequences[:, :-1], input_sequences[:, -1] y = np.eye(total_words)[y] # Create the model model = Sequential() model.add(Embedding(total_words, 50, input_length=max_sequence_length-1)) model.add(LSTM(100)) model.add(Dense(total_words, activation='softmax')) # Compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model history = model.fit(X, y, epochs=100, verbose=2) print(f"Final Loss on Training Data: {history.history['loss'][-1]}") # Generate text seed_text = "Amidst the golden hues of autumn leaves" next_words = 100 for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_sequence_length-1, padding='pre') predicted = model.predict_classes(token_list, verbose=0) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word print(seed_text)