from sklearn.neural_network import MLPRegressor from scores import MAPE def random_state_fit(i, x, y, x_test, y_test): mlr = MLPRegressor(random_state=i, max_iter=2000, n_iter_no_change=20, activation='relu', alpha=0.01, hidden_layer_sizes=[20, 20], tol=0.0000001) mlr.fit(x, y) y_pred = mlr.predict(x_test) acc = 100 - MAPE(y_test, y_pred) print('random state', i, "\naccuracy", acc) return acc