import numpy as np from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.src.layers import Dropout #filename = "rutext.txt" filename = "engtext.txt" with open(filename, "r", encoding="utf-8") as f: text = f.read() # Создаем токенизатор и преобразуем текст в последовательности tokenizer = Tokenizer() tokenizer.fit_on_texts([text]) total_words = len(tokenizer.word_index) + 1 input_sequences = [] for line in text.split('\n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] input_sequences.append(n_gram_sequence) # Подготавливаем данные для обучения max_sequence_length = max([len(x) for x in input_sequences]) input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre') X, y = input_sequences[:, :-1], input_sequences[:, -1] # Определяем архитектуру нейронной сети model = Sequential() model.add(Embedding(total_words, 50, input_length=max_sequence_length - 1)) model.add(LSTM(512)) model.add(Dropout(0.2)) model.add(Dense(total_words, activation='softmax')) # Компилируем модель model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Обучаем модель model.fit(X, y, epochs=50, verbose=1) # Функция для генерации текста def generate_text(seed_text, next_words, max_sequence_len, model, tokenizer): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_sequence_len - 1, padding='pre') predicted_probs = model.predict(token_list)[0] predicted = np.random.choice(len(predicted_probs), p=predicted_probs) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text # Пример использования #generated_text = generate_text("Война и", 25, max_sequence_length, model, tokenizer) generated_text = generate_text("Shakespeare was", 25, max_sequence_length, model, tokenizer) print(generated_text)