import numpy as np from keras_preprocessing.sequence import pad_sequences from keras_preprocessing.text import Tokenizer from keras.models import Sequential from keras.layers import Dense, LSTM, Embedding, Dropout from keras.callbacks import ModelCheckpoint def recreate_model(predictors, labels, model, filepath, epoch_num): model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) append_epochs(predictors, labels, model, epoch_num) def append_epochs(predictors, labels, model, filepath, epoch_num): checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min') desired_callbacks = [checkpoint] model.fit(predictors, labels, epochs=epoch_num, verbose=1, callbacks=desired_callbacks) def generate_text(tokenizer, seed_text, next_words, model, max_seq_length): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_seq_length - 1, padding='pre') predicted = np.argmax(model.predict(token_list), axis=-1) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text def start(): flag = -1 while flag < 1 or flag > 2: flag = int(input("Select model and text (1 - eng, 2 - ru): ")) if flag == 1: file = open("data.txt").read() filepath = "model_eng.hdf5" elif flag == 2: file = open("rus_data.txt").read() filepath = "model_rus.hdf5" else: exit(1) tokenizer = Tokenizer() tokenizer.fit_on_texts([file]) words_count = len(tokenizer.word_index) + 1 input_sequences = [] for line in file.split('\n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] input_sequences.append(n_gram_sequence) max_seq_length = max([len(x) for x in input_sequences]) input_sequences = pad_sequences(input_sequences, maxlen=max_seq_length, padding='pre') predictors, labels = input_sequences[:, :-1], input_sequences[:, -1] model = Sequential() model.add(Embedding(words_count, 100, input_length=max_seq_length - 1)) model.add(LSTM(150)) model.add(Dropout(0.15)) model.add(Dense(words_count, activation='softmax')) flag = input("Do you want to recreate the model ? (print yes): ") if flag == 'yes': flag = input("Are you sure? (print yes): ") if flag == 'yes': num = int(input("Select number of epoch: ")) if 0 < num < 100: recreate_model(predictors, labels, model, filepath, num) model.load_weights(filepath) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) flag = input("Do you want to train the model ? (print yes): ") if flag == 'yes': flag = input("Are you sure? (print yes): ") if flag == 'yes': num = int(input("Select number of epoch: ")) if 0 < num < 100: append_epochs(predictors, labels, model, filepath, num) flag = 'y' while flag == 'y': seed = input("Enter seed: ") print(generate_text(tokenizer, seed, 25, model, max_seq_length)) flag = input("Continue? (print \'y\'): ") start()