from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier import pandas as pd import numpy as np def test_iter(iters_num, x_train, x_test, y_train, y_test): print("Количество итераций: ", iters_num) scores = [] for i in range(10): neuro = MLPClassifier(max_iter=iters_num) neuro.fit(x_train, y_train.values.ravel()) score = neuro.score(x_test, y_test) print(f'Оценка №{i + 1} - {score}') scores.append(score) mean_value = np.mean(scores) print(f"Средняя оценка - {mean_value}") return mean_value def start(): data = pd.read_csv('loan.csv') x = data[['ApplicantIncome', 'LoanAmount', 'Credit_History', 'Self_Employed', 'Education', 'Married']] y = data[['Loan_Status']] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42) iters = [200, 400, 600, 800, 1000] iters_means = [] for i in range(len(iters)): mean_value = test_iter(iters[i], x_train, x_test, y_train, y_test) iters_means.append(mean_value) plt.figure(1, figsize=(16, 9)) plt.plot(iters, iters_means, c='r') plt.show() start()