import numpy as np from keras.models import load_model from keras_preprocessing.sequence import pad_sequences from keras_preprocessing.text import Tokenizer from antonov_dmitry_lab_7.lab7 import tokenizer, max_sequence_length # Step 3: Load the pre-trained model model = load_model('my_model.h5') # Replace with the actual path to your model file # Recreate the Tokenizer and compile the model (in case the model was not compiled before saving) with open('small.txt', 'r') as file: text = file.read() tokenizer = Tokenizer() tokenizer.fit_on_texts([text]) total_words = len(tokenizer.word_index) + 1 def generate_text(seed_text, next_words, model, max_sequence_length): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre') predicted = np.argmax(model.predict(token_list), axis=-1) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text # Generate text using the loaded model (same as before) generated_text = generate_text("Once upon a", 50, model, max_sequence_length) print(generated_text)