import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_moons from sklearn.model_selection import train_test_split from sklearn.linear_model import Perceptron from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score # Генерируем данные rs = 42 X, y = make_moons(n_samples=1000, noise=0.3, random_state=rs) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rs) def train_and_evaluate_model(model, X_train, y_train, X_test, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) return accuracy # Построение моделей perceptron_model = Perceptron(random_state=rs) perceptron_accuracy = train_and_evaluate_model(perceptron_model, X_train, y_train, X_test, y_test) mlp_model_10_neurons = MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs) mlp_10_neurons_accuracy = train_and_evaluate_model(mlp_model_10_neurons, X_train, y_train, X_test, y_test) mlp_model_100_neurons = MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs) mlp_100_neurons_accuracy = train_and_evaluate_model(mlp_model_100_neurons, X_train, y_train, X_test, y_test) # Построение графиков plt.figure(figsize=(12, 4)) plt.subplot(131) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.') plt.title("Персептрон\nТочность: {:.2f}%".format(perceptron_accuracy * 100)) plt.subplot(132) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.') plt.title("Многослойный персептрон\nс 10-ю нейронами в скрытом слое\nТочность: {:.2f}%".format(mlp_10_neurons_accuracy * 100)) plt.subplot(133) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.') plt.title("Многослойный персептрон\nс 100-а нейронами в скрытом слое\nТочность: {:.2f}%".format(mlp_100_neurons_accuracy * 100)) plt.tight_layout() plt.savefig('models.png') plt.show()