import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, LSTM, Dense import numpy as np # Загрузка и подготовка данных with open('russian_text.txt', 'r', encoding='cp1251') as file: russian_text = file.read() # Токенизация текста tokenizer = tf.keras.preprocessing.text.Tokenizer() tokenizer.fit_on_texts([russian_text]) total_words = len(tokenizer.word_index) + 1 # Преобразование текста в числовые последовательности input_sequences = [] for line in russian_text.split('n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i+1] input_sequences.append(n_gram_sequence) # Создание входных и целевых последовательностей max_sequence_length = max([len(x) for x in input_sequences]) input_sequences = np.array(tf.keras.preprocessing.sequence.pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')) predictors, label = input_sequences[:, :-1], input_sequences[:, -1] # Построение и обучение модели model = Sequential() model.add(Embedding(total_words, 100, input_length=max_sequence_length-1)) model.add(LSTM(150)) model.add(Dense(total_words, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') model.fit(predictors, label, epochs=150, batch_size=64) def generate_text(seed_text, next_words, model, max_sequence_length): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = tf.keras.preprocessing.sequence.pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre') predicted = np.argmax(model.predict(token_list, verbose=0), axis=-1) # Поиск слова, соответствующего предсказанному индексу output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text # Генерация и сохранение русскоязычного текста russian_generated_text = generate_text('Абрикосовая', next_words=100, model=model, max_sequence_length=max_sequence_length) with open('generated_russian_text.txt', 'w', encoding='utf-8') as file: file.write(russian_generated_text) # Загрузка и подготовка данных with open('english_text.txt', 'r', encoding='utf-8') as file: english_text = file.read() # Токенизация текста tokenizer = tf.keras.preprocessing.text.Tokenizer() tokenizer.fit_on_texts([english_text]) total_words = len(tokenizer.word_index) + 1 # Преобразование текста в числовые последовательности input_sequences = [] for line in english_text.split('n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i+1] input_sequences.append(n_gram_sequence) # Создание входных и целевых последовательностей max_sequence_length = max([len(x) for x in input_sequences]) input_sequences = np.array(tf.keras.preprocessing.sequence.pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')) predictors, label = input_sequences[:, :-1], input_sequences[:, -1] # Построение и обучение модели model = Sequential() model.add(Embedding(total_words, 100, input_length=max_sequence_length-1)) model.add(LSTM(150)) model.add(Dense(total_words, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') model.fit(predictors, label, epochs=150, batch_size=64) # Генерация и сохранение англоязычного текста english_generated_text = generate_text('It', next_words=100, model=model, max_sequence_length=max_sequence_length) with open('generated_english_text.txt', 'w', encoding='utf-8') as file: file.write(english_generated_text)