import pandas as pd from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neural_network import MLPRegressor # Загрузка данных data = pd.read_csv("smoking_drinking_dataset.csv") data = data.sample(frac=0.3, random_state=42) # # Подготовка данных data = pd.get_dummies(data, columns=['sex', 'DRK_YN'], drop_first=True) # Разделение данных на признаки (X) и целевую переменную (y) X = data.drop(columns=['SMK_stat_type_cd']) y = data['SMK_stat_type_cd'] # Разделение данных X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Создание и обучение модели model = MLPRegressor(hidden_layer_sizes=(100,1), max_iter=500, learning_rate_init=0.001, random_state=42, alpha=0.0001, activation='tanh', solver='adam') #model = MLPRegressor(random_state=42) model.fit(X_train, y_train) # Предсказание на тестовом наборе predictions = model.predict(X_test) # Оценка модели mse = mean_squared_error(y_test, predictions) r2 = r2_score(y_test, predictions) print(f'Mean Squared Error: {mse}') print(f'R-squared: {r2}') # Выбор оптимальных параметров c помощью GridSearchCV # param_grid = {'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,1), (200,100)], # 'activation': ['relu','tanh','logistic'], # 'alpha': [0.0001, 0.05], # 'max_iter': [50, 100, 500, 1000], # 'learning_rate': ['constant','adaptive'], # 'solver': ['adam', 'sgd']} # estimator=MLPRegressor(max_iter=10000, random_state=42) # grid = GridSearchCV(estimator, param_grid, n_jobs= -1, cv=5) # grid.fit(X_train, y_train) # # print(grid.best_params_)