from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score def random_state_fit(i, x_train, y_train, x_test, y_test, func): mlp = MLPClassifier(random_state=i, max_iter=4000, n_iter_no_change=10, activation=func, alpha=0.01, hidden_layer_sizes=[100, 100]) mlp.fit(x_train, y_train) predictions = mlp.predict(x_test) acc_mlp = accuracy_score(y_test, predictions) print(f"Func {func} with accuracy {acc_mlp} \n") return acc_mlp