gordeeva_anna_lab7 #292

Merged
Alexey merged 1 commits from gordeeva_anna_lab_7 into main 2024-01-10 09:39:36 +04:00
4 changed files with 152 additions and 0 deletions

View File

@ -0,0 +1,43 @@
## Задание
Выбрать художественный текст и обучить на нем рекуррентную нейронную сеть для решения задачи генерации.
## Зависимости
Для работы этого приложения необходимы следующие библиотеки Python:
* NumPy
* TensorFlow
* Streamlit
## Запуск
```bash
streamlit laba7.py
```
## Описание кода
1. Импорт библиотек:
Импортируются необходимые библиотеки, такие как docx для чтения текстов из файлов Word, streamlit для создания веб-приложения, numpy, tensorflow и keras для обучения нейронных сетей.
2. Извлечение текста из файлов Word:
Функция extract_text_from_docx используется для извлечения текста из двух файлов Word на русском (textru) и английском (texten). Это делается с помощью библиотеки docx.
3. Подготовка данных для обучения моделей:
Текст из файлов разбивается на последовательности для обучения рекуррентных нейронных сетей (LSTM). Текст разбивается на последовательности определенной длины (maxlen) и используется для обучения моделей на русском и английском текстах.
4. Создание и обучение моделей:
Два отдельных экземпляра модели (model_russian и model_english) создаются и обучаются на соответствующих данных русского и английского текстов.
5. Генерация текста на основе обученных моделей:
Функция generate_text используется для генерации текста на основе обученных моделей. Этот текст выводится с помощью streamlit в веб-приложении.
## Результат
Сгенерированный русский текст:
Ты к моему несчастью верь как в святыню верит монах как в чудо чудо верит дева как верят в вечернюю печальные странники в пути
Сгенерированный английский текст:
In the to my distress as the monk believes in a shrine as the maiden believes in a miracle as weary travelers believe in the evening star on their journey

View File

@ -0,0 +1,99 @@
import docx
import streamlit as st
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Embedding
def extract_text_from_docx(file_path):
doc = docx.Document(file_path)
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
return '\n'.join(full_text)
file_path1 = '"C:/Users/79084/Desktop/textru.doc"'
file_path2 = '"C:/Users/79084/Desktop/texten.doc"'
# Извлечение текста из файла
textru = extract_text_from_docx(file_path1)
texten = extract_text_from_docx(file_path2)
# Предобработка текста
tokenizer_russian = tf.keras.preprocessing.text.Tokenizer(char_level=True)
tokenizer_russian.fit_on_texts(textru)
tokenized_text_russian = tokenizer_russian.texts_to_sequences([textru])[0]
tokenizer_english = tf.keras.preprocessing.text.Tokenizer(char_level=True)
tokenizer_english.fit_on_texts(texten)
tokenized_text_english = tokenizer_english.texts_to_sequences([texten])[0]
# Создание последовательных последовательностей для обучения
maxlen = 40
step = 3
sentences_russian = []
next_chars_russian = []
sentences_english = []
next_chars_english = []
for i in range(0, len(tokenized_text_russian) - maxlen, step):
sentences_russian.append(tokenized_text_russian[i: i + maxlen])
next_chars_russian.append(tokenized_text_russian[i + maxlen])
for i in range(0, len(tokenized_text_english) - maxlen, step):
sentences_english.append(tokenized_text_english[i: i + maxlen])
next_chars_english.append(tokenized_text_english[i + maxlen])
# Преобразование данных в массивы numpy
x_russian = np.array(sentences_russian)
y_russian = np.array(next_chars_russian)
x_english = np.array(sentences_english)
y_english = np.array(next_chars_english)
# Создание модели для русского текста
model_russian = Sequential()
model_russian.add(Embedding(len(tokenizer_russian.word_index) + 1, 128))
model_russian.add(LSTM(128))
model_russian.add(Dense(len(tokenizer_russian.word_index) + 1, activation='softmax'))
model_russian.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
# Обучение модели на русском тексте
model_russian.fit(x_russian, y_russian, batch_size=128, epochs=50)
# Создание модели для английского текста
model_english = Sequential()
model_english.add(Embedding(len(tokenizer_english.word_index) + 1, 128))
model_english.add(LSTM(128))
model_english.add(Dense(len(tokenizer_english.word_index) + 1, activation='softmax'))
model_english.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
# Обучение модели на английском тексте
model_english.fit(x_english, y_english, batch_size=128, epochs=50)
# Функция для генерации текста на основе обученной модели
def generate_text(model, tokenizer, seed_text, maxlen, temperature=1.0, num_chars=400):
generated_text = seed_text
for _ in range(num_chars):
encoded = tokenizer.texts_to_sequences([seed_text])[0]
encoded = np.array(encoded)
predicted_probs = model.predict(encoded, verbose=0)[0]
# Используем temperature для более разнообразных предсказаний
predicted_probs = np.log(predicted_probs) / temperature
exp_preds = np.exp(predicted_probs)
predicted_probs = exp_preds / np.sum(exp_preds)
predicted = np.random.choice(len(predicted_probs), p=predicted_probs)
next_char = tokenizer.index_word.get(predicted, '')
generated_text += next_char
seed_text += next_char
seed_text = seed_text[1:]
return generated_text
generated_russian_text = generate_text(model_russian, tokenizer_russian, 'Ты к моему', maxlen, temperature=0.5, num_chars=400)
st.write(generated_russian_text)
generated_english_text = generate_text(model_english, tokenizer_english, 'In the', maxlen, temperature=0.5, num_chars=400)
st.write(generated_english_text)

View File

@ -0,0 +1,5 @@
Believe in me, to my distress,
As the monk believes in a shrine,
As the maiden believes in a miracle,
As weary travelers believe
In the evening star on their journey.

View File

@ -0,0 +1,5 @@
Ты, к моему несчастью, верь,
Как в святыню, верит монах,
Как в чудо, верит дева,
Как верят в вечернюю звезду
Печальные странники в пути.