shadaev_anton_lab_1 #127
@ -3,43 +3,35 @@ import matplotlib.pyplot as plt
|
||||
from sklearn.datasets import make_classification
|
||||
from sklearn.linear_model import Perceptron
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.model_selection import train_test_split, learning_curve
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
# Наполнение искусственными данными
|
||||
rs = np.random.RandomState(42)
|
||||
X, y = make_classification(n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs,
|
||||
n_clusters_per_class=1)
|
||||
n_clusters_per_class=1)
|
||||
|
||||
# Обучающие и тестовые наборы данных
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=rs)
|
||||
|
||||
# Список моделей для обучения
|
||||
models = [
|
||||
('Персептрон', Perceptron()),
|
||||
('MLP (10 нейронов)', MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)),
|
||||
('MLP (100 нейронов)', MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs))
|
||||
('Перцептрон', Perceptron()),
|
||||
('MLP (10 нейронов)', MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)),
|
||||
('MLP (100 нейронов)', MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs))
|
||||
]
|
||||
|
||||
fig, axs = plt.subplots(1, len(models), figsize=(12, 4))
|
||||
|
||||
# Визуализация графиков
|
||||
for i, (name, model) in enumerate(models):
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
|
||||
# Построение кривых обуч ения
|
||||
train_sizes, train_scores, valid_scores = learning_curve(
|
||||
model, X, y, train_sizes=[50, 80, 110], cv=5)
|
||||
axs[i].plot(train_sizes, train_scores.mean(axis=1), 'o-', color="r",
|
||||
label="Оценка обучения")
|
||||
axs[i].plot(train_sizes, valid_scores.mean(axis=1), 'o-', color="g",
|
||||
label="Оценка кросс-валидации")
|
||||
axs[i].set_title(f'{name} (Точность: {accuracy:.2f})')
|
||||
axs[i].set_xlabel("Training examples")
|
||||
axs[i].set_ylabel("Score")
|
||||
axs[i].legend(loc="best")
|
||||
axs[i].grid()
|
||||
axs[i].scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap=plt.cm.Paired)
|
||||
axs[i].set_title(f'{name} (Accuracy: {accuracy:.2f})')
|
||||
axs[i].set_xlabel("Размер обучающего набора")
|
||||
axs[i].set_ylabel("Средняя точность модели")
|
||||
|
||||
plt.show()
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 53 KiB |
Loading…
Reference in New Issue
Block a user