Compare commits
2 Commits
9644582307
...
9bf1c4845a
Author | SHA1 | Date | |
---|---|---|---|
|
9bf1c4845a | ||
|
94a76f47d8 |
14
antonov_dmitry_lab_1/README.md
Normal file
14
antonov_dmitry_lab_1/README.md
Normal file
@ -0,0 +1,14 @@
|
||||
# Лаб 1
|
||||
Работа с типовыми наборами данных и различными моделями
|
||||
# Вариант 3
|
||||
Данные: make_classification (n_samples=500, n_features=2,
|
||||
n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
|
||||
# Модели:
|
||||
1. Линейную регрессию
|
||||
1. Полиномиальную регрессию (со степенью 3)
|
||||
1. Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
|
||||
# Screenshots
|
||||
|
||||
<p>
|
||||
<img src="screens/Screenshot_2022-07-20-15-27-01.png" width="200" title="пример 1">
|
||||
</p>
|
97
antonov_dmitry_lab_1/lab1.py
Normal file
97
antonov_dmitry_lab_1/lab1.py
Normal file
@ -0,0 +1,97 @@
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from skimage.metrics import mean_squared_error
|
||||
from sklearn.datasets import make_moons, make_circles, make_classification
|
||||
from sklearn.linear_model import LinearRegression, Ridge
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
|
||||
|
||||
X, y = make_classification(
|
||||
n_features=2,
|
||||
n_redundant=0,
|
||||
n_informative=2,
|
||||
random_state=0,
|
||||
n_clusters_per_class=1
|
||||
)
|
||||
|
||||
rng = np.random.RandomState(2)
|
||||
X += 2 * rng.uniform(size=X.shape)
|
||||
linearly_dataset = (X, y)
|
||||
moon_dataset = make_moons(noise=0.3, random_state=0)
|
||||
circles_dataset = make_circles(noise=0.2, factor=0.5, random_state=1)
|
||||
datasets = [moon_dataset, circles_dataset, linearly_dataset]
|
||||
|
||||
"""
|
||||
Данные:
|
||||
· moon_dataset
|
||||
· circles_dataset
|
||||
· linearly_dataset
|
||||
"""
|
||||
for ds_cnt, ds in enumerate(datasets):
|
||||
X, y = ds
|
||||
X = StandardScaler().fit_transform(X)
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=.4, random_state=42
|
||||
)
|
||||
"""
|
||||
Модели:
|
||||
· Линейную регрессию
|
||||
· Полиномиальную регрессию (со степенью 3)
|
||||
· Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
|
||||
"""
|
||||
|
||||
# Линейная
|
||||
linear_regression = LinearRegression()
|
||||
linear_regression.fit(X_train, y_train)
|
||||
linear_predictions = linear_regression.predict(X_test)
|
||||
linear_mse = mean_squared_error(y_test, linear_predictions)
|
||||
|
||||
# Полиномиальная (degree=3)
|
||||
poly_regression = make_pipeline(PolynomialFeatures(degree=3), LinearRegression())
|
||||
poly_regression.fit(X_train, y_train)
|
||||
poly_predictions = poly_regression.predict(X_test)
|
||||
poly_mse = mean_squared_error(y_test, poly_predictions)
|
||||
|
||||
# Гребневая (degree=3, alpha=1.0)
|
||||
poly_regression_alpha = make_pipeline(PolynomialFeatures(degree=3), Ridge(alpha=1.0))
|
||||
poly_regression_alpha.fit(X_train, y_train)
|
||||
poly_alpha_predictions = poly_regression_alpha.predict(X_test)
|
||||
poly_alpha_mse = mean_squared_error(y_test, poly_alpha_predictions)
|
||||
|
||||
# График данных
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm')
|
||||
plt.title('Датасет №' + str(ds_cnt))
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
|
||||
# График линейной модели
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=linear_predictions, cmap='coolwarm')
|
||||
plt.title('Линейная ds'+ str(ds_cnt))
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
plt.show()
|
||||
|
||||
# График полиномиальной модели (degree=3)
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=poly_predictions, cmap='coolwarm')
|
||||
plt.title('Полиномиальная (degree=3) ds' + str(ds_cnt))
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
plt.show()
|
||||
|
||||
# График гребневой модели (degree=3, alpha=1.0)
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=poly_alpha_predictions, cmap='coolwarm')
|
||||
plt.title('Гребневая (degree=3, alpha=1.0) ds' + str(ds_cnt))
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
plt.show()
|
||||
|
||||
# Сравнение качества
|
||||
print('Линейная MSE:', linear_mse)
|
||||
print('Полиномиальная (degree=3) MSE:', poly_mse)
|
||||
print('Гребневая (degree=3, alpha=1.0) MSE:', poly_alpha_mse)
|
||||
|
Loading…
x
Reference in New Issue
Block a user