Compare commits

...

3 Commits

6 changed files with 92217 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,93 @@
## Лабораторная работа 3. Вариант 4.
### Задание
Выполнить ранжирование признаков и решить с помощью библиотечной реализации дерева решений
задачу классификации на 99% данных из курсовой работы. Проверить
работу модели на оставшемся проценте, сделать вывод.
Модель:
- Дерево решений `DecisionTreeClassifier`.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
``` python
python main.py
```
### Используемые технологии
- Библиотека `pandas`, используемая для работы с данными для анализа scv формата.
- `sklearn` (scikit-learn): Scikit-learn - это библиотека для машинного обучения и анализа данных в Python. Из данной библиотеки были использованы следующие модули:
- `metrics` - набор инструменов для оценки моделей
- `DecisionTreeClassifier` - классификатор, реализующий алгоритм дерева решений. Дерево решений - это модель машинного обучения, которая разбивает данные на рекурсивные решения на основе значений признаков. Она используется для задач классификации и регрессии.
- `accuracy_score` -функция из scikit-learn, которая используется для оценки производительности модели классификации путем вычисления доли правильно классифицированных примеров (точности) на тестовом наборе данных.
- `train_test_split` - это функция из scikit-learn, используемая для разделения набора данных на обучающий и тестовый наборы.
- `LabelEncoder` - это класс из scikit-learn, используемый для преобразования категориальных признаков (например, строки) в числовые значения.
### Описание работы
#### Описание набора данных
Набор данных: набор данных о цене автомобиля в автопарке.
Названия столбцов набора данных и их описание:
- Id: Уникальный идентификатор для каждого автомобиля в списке.
- Price: Ценовой диапазон автомобилей с конкретными ценниками и подсчетами. (111000 - 77500000)
- Company Name: Название компании-производителя автомобилей с указанием процентной доли представительства каждой компании.
- Model Name: Название модели автомобилей с указанием процентного соотношения каждой модели.
- Model Year: Диапазон лет выпуска автомобилей с указанием количества и процентных соотношений. (1990 - 2019)
- Location: Местоположение автомобилей с указанием регионов, где они доступны для покупки, а также их процентное соотношение.
- Mileage: Информация о пробеге автомобилей с указанием диапазонов пробега, количества и процентов. (1 - 999999)
- Engine Type: Описания типов двигателей с процентными соотношениями для каждого типа.
- Engine Capacity: Мощность двигателя варьируется в зависимости от количества и процентов. (16 - 6600)
- Color: Цветовое распределение автомобилей с указанием процентных соотношений для каждого цвета.
- Assembly: Импорт или местный рынок.
- Body Type: Тип кузова.
- Transmission Type: Тип трансмиссии.
- Registration Status: Статус регистрации.
Ссылка на страницу набора на kuggle: [Ultimate Car Price Prediction Dataset](https://www.kaggle.com/datasets/mohidabdulrehman/ultimate-car-price-prediction-dataset/data)
#### Оцифровка и нормализация данных
Для нормальной работы с данными, необходимо исключить из них все нечисловые значения.
После этого, представить все строковые значения параметров как числовые и очистить датасет от "мусора".
Для удаления нечисловых значений воспользуемся функцией `.dropna()`.
Так же мы удаляем первый столбец `Id`, так как при открытии файла в `pd` он сам нумерует строки.
Все нечисловые значения мы преобразуем в числовые с помощью `LabelEncoder`:
```python
label_encoder = LabelEncoder()
data['Location'] = label_encoder.fit_transform(data['Location'])
data['Company Name'] = label_encoder.fit_transform(data['Company Name'])
data['Model Name'] = label_encoder.fit_transform(data['Model Name'])
data['Engine Type'] = label_encoder.fit_transform(data['Engine Type'])
data['Color'] = label_encoder.fit_transform(data['Color'])
data['Assembly'] = label_encoder.fit_transform(data['Assembly'])
data['Body Type'] = label_encoder.fit_transform(data['Body Type'])
data['Transmission Type'] = label_encoder.fit_transform(data['Transmission Type'])
data['Registration Status'] = label_encoder.fit_transform(data['Registration Status'])
```
#### Выявление значимых параметров
```python
# Оценка важности признаков
feature_importances = clf.feature_importances_
feature_importance_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)
```
#### Решение задачи кластеризации на полном наборе признаков
Чтобы решить задачу кластеризации моделью `DecisionTreeClassifier`, воспользуемся методом `.predict()`.
```python
clf = DecisionTreeClassifier(max_depth=5, random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```
#### Оценка эффективности
Для оценки точности модели будем использовать встроенный инструмент `accuracy_score`:
```python
accuracy = accuracy_score(y_test, y_pred)
```
#### Результаты
![](accuracy.png "Точность")
![](important.png "Важность признаков")

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@ -0,0 +1,78 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
''' Названия столбцов набора данных и их описание:
Id: Уникальный идентификатор для каждого автомобиля в списке.
Price: Ценовой диапазон автомобилей с конкретными ценниками и подсчетами. (111000 - 77500000)
Company Name: Название компании-производителя автомобилей с указанием процентной доли представительства каждой компании.
Model Name: Название модели автомобилей с указанием процентного соотношения каждой модели.
Model Year: Диапазон лет выпуска автомобилей с указанием количества и процентных соотношений. (1990 - 2019)
Location: Местоположение автомобилей с указанием регионов, где они доступны для покупки, а также их процентное соотношение.
Mileage: Информация о пробеге автомобилей с указанием диапазонов пробега, количества и процентов. (1 - 999999)
Engine Type: Описания типов двигателей с процентными соотношениями для каждого типа.
Engine Capacity: Мощность двигателя варьируется в зависимости от количества и процентов. (16 - 6600)
Color: Цветовое распределение автомобилей с указанием процентных соотношений для каждого цвета.
'''
# Загрузите данные из вашей курсовой работы, предположим, что у вас есть файл CSV.
data = pd.read_csv('Data_pakwheels.csv')
data.pop("Id")
data.dropna(inplace=True) # Удаление строки с пропущенными значениями.
# Преобразуйте категориальные признаки в числовые. Используйте, например, one-hot encoding.
# data = pd.get_dummies(data, columns=['Company Name', 'Model Name', 'Location', 'Engine Type', 'Color'])
# Создайте объект LabelEncoder
label_encoder = LabelEncoder()
data['Location'] = label_encoder.fit_transform(data['Location'])
data['Company Name'] = label_encoder.fit_transform(data['Company Name'])
data['Model Name'] = label_encoder.fit_transform(data['Model Name'])
data['Engine Type'] = label_encoder.fit_transform(data['Engine Type'])
data['Color'] = label_encoder.fit_transform(data['Color'])
data['Assembly'] = label_encoder.fit_transform(data['Assembly'])
data['Body Type'] = label_encoder.fit_transform(data['Body Type'])
data['Transmission Type'] = label_encoder.fit_transform(data['Transmission Type'])
data['Registration Status'] = label_encoder.fit_transform(data['Registration Status'])
# Разделение данных на обучающий набор и тестовый набор. Мы будем использовать 99% данных для обучения.
train_data, test_data = train_test_split(data, test_size=0.01, random_state=42)
# Определите целевую переменную (то, что вы пытаетесь предсказать, например, 'Price').
X_train = train_data.drop(columns=['Price'])
y_train = train_data['Price']
X_test = test_data.drop(columns=['Price'])
y_test = test_data['Price']
# Создание и обучение модели DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# Оценка важности признаков
feature_importances = clf.feature_importances_
# Создание DataFrame с именами признаков и их важностью
feature_importance_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})
# Сортировка признаков по убыванию важности
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)
# Вывод ранжированных признаков
print(feature_importance_df)
clf = DecisionTreeClassifier(max_depth=5, random_state=42)
# Обучите модель на обучающем наборе данных
clf.fit(X_train, y_train)
# Предсказание целевой переменной на тестовом наборе данных
y_pred = clf.predict(X_test)
# Оцените производительность модели с помощью различных метрик
accuracy = accuracy_score(y_test, y_pred)
print(f'Точность модели: {accuracy}')

File diff suppressed because it is too large Load Diff