create README
This commit is contained in:
parent
2cfa4971a6
commit
f3594e4626
BIN
istyukov_timofey_lab_6/1_plot_result.png
Normal file
BIN
istyukov_timofey_lab_6/1_plot_result.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
BIN
istyukov_timofey_lab_6/2_dataset.jpg
Normal file
BIN
istyukov_timofey_lab_6/2_dataset.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 37 KiB |
BIN
istyukov_timofey_lab_6/3_score.jpg
Normal file
BIN
istyukov_timofey_lab_6/3_score.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
95
istyukov_timofey_lab_6/README.md
Normal file
95
istyukov_timofey_lab_6/README.md
Normal file
@ -0,0 +1,95 @@
|
||||
# Лабораторная работа №5. Регрессия
|
||||
## 12 вариант
|
||||
___
|
||||
|
||||
### Задание:
|
||||
Использовать регрессию по варианту для своих данных по варианту,
|
||||
самостоятельно сформулировав задачу. Оценить, насколько хорошо она
|
||||
подходит для решения сформулированной вами задачи.
|
||||
|
||||
### Вариант:
|
||||
- Модель нейронной сети: **MLPRegressor**
|
||||
|
||||
### Вариант набора данных по курсовой работе:
|
||||
- Прогнозирование музыкальных жанров ("Prediction of music genre")
|
||||
|
||||
___
|
||||
|
||||
### Запуск
|
||||
- Запустить файл lab7.py
|
||||
|
||||
### Используемые технологии
|
||||
- Язык программирования **Python**
|
||||
- Среда разработки **PyCharm**
|
||||
- Библиотеки:
|
||||
* pandas
|
||||
* sklearn
|
||||
* matplotlib
|
||||
|
||||
### Описание программы
|
||||
**Набор данных (Kaggle):** Полный список жанров, включенных в CSV:
|
||||
«Электронная музыка», «Аниме», «Джаз», «Альтернатива», «Кантри», «Рэп»,
|
||||
«Блюз», «Рок», «Классика», «Хип-хоп».
|
||||
|
||||
**Задача, решаемая нейронной сетью:**
|
||||
Предсказание популярности нового музыкального трека на основе его
|
||||
определённых характеристик.
|
||||
|
||||
**Задача оценки:**
|
||||
Анализ с помощью коэффициента детерминации и потери регрессии
|
||||
среднеквадратичной логарифмической ошибке, плюсом к ним график сравнения
|
||||
реальных и предсказанных значений.
|
||||
|
||||
---
|
||||
### Пример работы
|
||||
|
||||
*Датасет, сформированный из случайных строк csv-файла.*
|
||||
|
||||
![Graphics](2_dataset.jpg)
|
||||
|
||||
---
|
||||
|
||||
***Коэффициент детерминации** используется для оценки эффективности модели
|
||||
линейной регрессии. Он показывает, насколько хорошо наблюдаемые результаты
|
||||
воспроизводятся моделью, в зависимости от соотношения суммарных отклонений
|
||||
результатов, описываемых моделью. По выводу можно отметить, что 33,4%
|
||||
изменчивости зависимого выходного атрибута можно объяснить с помощью модели,
|
||||
в то время как остальные 66,6% изменчивости все ещё не учтены.*
|
||||
|
||||
***Потери регрессии среднеквадратичной логарифмической ошибки (MSLE)** использует
|
||||
тот же подход, что и **MSE**, но использует логарифм для компенсации больших
|
||||
выбросов в наборе данных и обрабатывает их так, как если бы они были в одном
|
||||
масштабе. Это наиболее ценно в стремлении к сбалансированной модели с
|
||||
одинаковым процентом ошибок.*
|
||||
|
||||
![Graphics](3_score.jpg)
|
||||
|
||||
---
|
||||
|
||||
*График нейронной сети MLPRegressor, показывающий сравнение реальных
|
||||
(ось абсцисс) и предсказанных (ось ординат) данных.*
|
||||
|
||||
![Graphics](1_plot_result.png)
|
||||
|
||||
---
|
||||
|
||||
### Вывод
|
||||
Итак, нейронная сеть с поставленной задачей по сути не справилась. Работа
|
||||
со скрытыми слоями смогла улучшить результат, но лишь на значение, равное 0,1.
|
||||
|
||||
Использование слишком малого количества нейронов в скрытых слоях приведет к
|
||||
недообучению. Недообучение происходит, когда в скрытых слоях слишком мало
|
||||
нейронов для адекватного обнаружения сигналов в сложном наборе данных.
|
||||
Использование же слишком большого количества нейронов в скрытых слоях может
|
||||
привести к переобучению. Очевидно, должен быть достигнут некоторый компромисс
|
||||
между слишком большим и слишком малым количеством нейронов в скрытых слоях.
|
||||
Я пришёл к тому, что использовал 4 скрытых слоя с 50 нейронов в каждом.
|
||||
|
||||
Можно сделать заключение, что целевая переменная (процент популярности
|
||||
музыкального трека) выбрана неудачно, либо же требуется более детальная
|
||||
обработка данных и другой подход к оцениваемым признакам. Как вариант,
|
||||
можно рассмотреть StandardScaler или MinMaxScaler на этапе предварительной
|
||||
обработки данных. Но как упоминалось в прошлой лабораторной работе,
|
||||
популярность музыкального трека слишком неоднозначная величина, которую
|
||||
саму по себе предсказать не просто, так как нет точной формулы песни,
|
||||
которая взлетит в чартах. Искусство само по себе коварное :)
|
Loading…
Reference in New Issue
Block a user