romanova_adelina_lab_5 is ready

This commit is contained in:
enuementtt 2023-12-11 14:07:16 +04:00
parent 3e19f8fcb2
commit eb27f1410a
3 changed files with 166 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

View File

@ -0,0 +1,79 @@
# Лабораторная работа №5. Вариант 21
## Тема:
Регрессия
## Модель:
LinearRegression
## Как запустить программу:
Установить *python, numpy, matplotlib, sklearn*
```
python lab.py
```
## Какие технологии использовались:
Язык программирования Python, библиотеки numpy, matplotlib, sklearn
Среда разработки VSCode
# Что делает лабораторная работа:
Поскольку артериальное давление пациента в состоянии покоя является важным медицинским показателем, оно было выбрано для предсказания на основе доступных признаков, таких как возраст, пол и других.
Внедрение линейной регрессии в решение задачи прогнозирования артериального давления в состоянии покоя приносит несколько ключевых преимуществ.
Линейная регрессия является мощным инструментом в области статистики и машинного обучения, широко применяемым для анализа и моделирования связей между зависимыми и независимыми переменными. Ее основная цель — построить линейную функцию, наилучшим образом приближающую отношение между входными данными и целевой переменной. Это позволяет предсказывать значения целевой переменной на основе новых входных данных.
### Описание:
```LinearRegression``` - метод наименьших квадратов (MSE) это основной принцип LinearRegression. Он стремится минимизировать сумму квадратов разностей между фактическими и предсказанными значениями. Этот алгоритм предоставляет аналитическое решение для определения коэффициентов линейной модели, что делает его эффективным и простым для понимания.
Процесс обучения линейной регрессии требует выполнения следующих шагов:
  1.  Получить исходные данные
  2.  Выбрать целевое значение, которые нужно предсказывать
  3.  Обработать данные таким образом, чтобы все признаки имели только числовой формат, и добавить нормализацию, или иначе, стандартизацию данных
  4.  4. Провести обучение выбранной модели на подготовленных данных
Обработка данных происходит с помощью функции ```str_features_to_numeric```:
```
def str_features_to_numeric(data):
# Преобразовывает все строковые признаки в числовые.
# Определение категориальных признаков
categorical_columns = []
numerics = ['int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64']
features = data.columns.values.tolist()
for col in features:
if data[col].dtype in numerics: continue
categorical_columns.append(col)
# Кодирование категориальных признаков
for col in categorical_columns:
if col in data.columns:
le = LabelEncoder()
le.fit(list(data[col].astype(str).values))
data[col] = le.transform(list(data[col].astype(str).values))
return data
```
Далее происходит нормализация с помощью ```StandardScaler```.
В качестве целевого признака был выбран артериальное давление в состоянии покоя ```trestbps```- артериальное давление в состоянии покоя (в мм рт. ст. при поступлении в больницу). Обработанные данные поступают на вход обучения модели линейной регресии:
![](1.png "")
- reg.score_ - отображает точность работы модели
- reg.coef_ - отображает коэффициенты при признаках расположенных по порядку
- reg.intercept_ - показывает параметр смещения (в английской литературе bias)
## Вывод
На основе полученных результатов, можно сказать, что классическая модель линейной регрессии является более чем подходящей для решения именно этой конкретной задачи

View File

@ -0,0 +1,87 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.preprocessing import (LabelEncoder,
StandardScaler,
MinMaxScaler,
RobustScaler)
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold, learning_curve, ShuffleSplit
def str_features_to_numeric(data):
# Преобразовывает все строковые признаки в числовые.
# Определение категориальных признаков
categorical_columns = []
numerics = ['int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64']
features = data.columns.values.tolist()
for col in features:
if data[col].dtype in numerics: continue
categorical_columns.append(col)
# Кодирование категориальных признаков
for col in categorical_columns:
if col in data.columns:
le = LabelEncoder()
le.fit(list(data[col].astype(str).values))
data[col] = le.transform(list(data[col].astype(str).values))
return data
if __name__ == "__main__":
data = pd.read_csv("..//heart_disease_uci.csv")
data['target'] = data['trestbps']
data = data.drop(columns=['id', 'dataset', 'trestbps'])
data_wo_null = data.dropna()
print(len(data_wo_null))
encoded_data_wo_null = str_features_to_numeric(data_wo_null)
print(len(encoded_data_wo_null))
# Model standartization
# The standard score of a sample x is calculated as:
# z = (x - мат.ож.) / (стандартное отклонение)
scaler = StandardScaler()
new_data = pd.DataFrame(scaler.fit_transform(encoded_data_wo_null), columns = encoded_data_wo_null.columns)
dataset = data_wo_null.copy() # original data
target_name = 'target'
target = data_wo_null.pop(target_name)
test_train_split_part = 0.2
random_state = 42
train, valid, train_target, valid_target = train_test_split(new_data, target,
test_size=test_train_split_part,
random_state=random_state)
reg = LinearRegression().fit(train, train_target)
print("---"*15, " LinearRegression ", "---"*15)
print(f"Accuracy: {reg.score(valid, valid_target)}")
print(f"коэффициенты: {reg.coef_}")
print(f"Смещение относительно начала координат (bias): {reg.intercept_}")
SGD_reg = SGDRegressor(max_iter=1000, tol=1e-3)
SGD_reg.fit(train, train_target)
print("---"*15, " SGDRegressor ", "---"*15)
print(f"Accuracy: {SGD_reg.score(valid, valid_target)}")
print(f"коэффициенты: {SGD_reg.coef_}")
print(f"Смещение относительно начала координат (bias): {SGD_reg.intercept_}")
Ridge_clf = Ridge(alpha=1.0)
Ridge_clf.fit(train, train_target)
print("---"*15, " Ridge ", "---"*15)
print(f"Accuracy: {Ridge_clf.score(valid, valid_target)}")
print(f"коэффициенты: {Ridge_clf.coef_}")
print(f"Смещение относительно начала координат (bias): {Ridge_clf.intercept_}")