laba 2 ready!!!

This commit is contained in:
altteam 2023-11-22 22:52:44 +04:00
parent a8c58683dd
commit cc1802b4f0
4 changed files with 106 additions and 0 deletions

View File

@ -0,0 +1,35 @@
# IIS_2023_1
<h4>Задание</h4>
<p>
Используя код из [1](пункт «Решение задачи ранжирования признаков», стр. 205), выполните ранжирование признаков с помощью указанных по варианту моделей. Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Проведите анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению? (Названия\индексы признаков и будут ответом на задание).
</p>
<p>
7 Вариант.
<ul>
<li>Лассо (Lasso)</li>
<li>Случайное лассо (RandomizedLasso) </li>
<li>Рекурсивное сокращение признаков (Recursive Feature Elimination RFE)</li>
</ul>
<h4>Как запустить программу</h4>
Запустить скрипт verina_daria_lab_2/main.py, после чего в консоль будут выведены результаты выполнения программы.
<h4>Стек технологий</h4>
<p>
<ul>
<li>NumPy - это библиотека Python, предоставляющая поддержку для больших, многомерных массивов и матриц, а также набор функций для их манипуляции и обработки.</li>
<li>Sklearn - предоставляет ряд инструментов для моделирования данных, включая классификацию, регрессию, кластеризацию и уменьшение размерности. </li>
<li>pandas - программная библиотека на языке Python для обработки и анализа данных.</li>
</ul>
<h4>Описание кода</h4>
<p>
Программа выполняет ранжирование и сравнение признаков с использованием трех различных методов: LassoCV, Lasso и Random Forest для последующего их ранжирования и обрабатывает тремя моделями по варианту.
Таким образом можно легко определить наиважнейшие признаки.
</p>
<h6>Результат: </h6>
<img src="result1.png">
<img src="result2.png">
<p>
<ul>
<li>Вывод: по среднему значению самыми важными признаками являются 2, 4, 12 и 13 признаки</li>
</ul>
</p>

View File

@ -0,0 +1,71 @@
from sklearn.linear_model import LassoCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
def rank_to_dict(ranks, names):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1, size))
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
lasso_cv = LassoCV(alphas=np.linspace(0.001, 1, 100), cv=5)
lasso_cv.fit(X, Y)
rf = RandomForestRegressor(n_estimators=100)
rfe = RFE(estimator=rf, n_features_to_select=1, step=1)
rfe.fit(X, Y)
# названия признаков
names = ["x%s" % i for i in range(1, 15)]
# Stable Randomized Lasso Simulation
n_resampling = 200
rlasso_coefs = np.zeros((X.shape[1], n_resampling))
for i in range(n_resampling):
Y_permuted = np.random.permutation(Y)
rlasso = LassoCV(alphas=np.linspace(0.001, 1, 100), cv=5)
rlasso.fit(X, Y_permuted)
rlasso_coefs[:, i] = rlasso.coef_
rlasso_scores = np.std(rlasso_coefs, axis=1)
# словарь для ранжирования
ranks = {"Lasso": rank_to_dict(lasso_cv.coef_, names),
"RFE": rank_to_dict(rfe.ranking_, names),
"RandomizedLassoSim": rank_to_dict(rlasso_scores, names)}
mean = {}
for method, values in ranks.items():
for feature, score in values.items():
# Если элемента с текущим ключом в mean нет - добавляем
if feature not in mean:
mean[feature] = 0
# Суммируем значения по каждому ключу-имени признака
mean[feature] += score
df_ranks = pd.DataFrame(ranks)
# Выводим ранжирование
print("ПО КАЖДОМУ МЕТОДУ:")
print(df_ranks)
# Находим среднее по каждому признаку
for feature, score in mean.items():
mean[feature] = round(score / len(ranks), 2)
# Отсортированные средние значени
mean = sorted(mean.items(), key=lambda x: x[1], reverse=True)
print("СРЕДНИЕ")
print(mean)

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB