commit 1
This commit is contained in:
parent
3e19f8fcb2
commit
ba4a6f1402
@ -65,7 +65,7 @@
|
||||
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_1" />
|
||||
</key>
|
||||
</component>
|
||||
<component name="RunManager">
|
||||
<component name="RunManager" selected="Python.zavrazhnova_svetlana_lab3_2">
|
||||
<configuration name="zavrazhnova_svetlana_lab3_2" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="IIS_2023_1" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
|
BIN
istyukov_timofey_lab1/1_linear_regression.png
Normal file
BIN
istyukov_timofey_lab1/1_linear_regression.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 62 KiB |
BIN
istyukov_timofey_lab1/2_perceptron.png
Normal file
BIN
istyukov_timofey_lab1/2_perceptron.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 60 KiB |
BIN
istyukov_timofey_lab1/3_poly_ridge.png
Normal file
BIN
istyukov_timofey_lab1/3_poly_ridge.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 65 KiB |
111
istyukov_timofey_lab1/lab1.py
Normal file
111
istyukov_timofey_lab1/lab1.py
Normal file
@ -0,0 +1,111 @@
|
||||
# 12 вариант
|
||||
# Данные: make_classification (n_samples=500, n_features=2, n_redundant=0,
|
||||
# n_informative=2, random_state=rs, n_clusters_per_class=1)
|
||||
# Модели:
|
||||
# -- Линейную регрессию
|
||||
# -- Персептрон
|
||||
# -- Гребневую полиномиальную регрессию (со степенью 4, alpha = 1.0)
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_classification
|
||||
from sklearn.linear_model import LinearRegression, Perceptron, Ridge
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import mean_absolute_error, mean_squared_error, accuracy_score, balanced_accuracy_score
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
|
||||
|
||||
|
||||
cm_bright_1 = ListedColormap(['#7FFFD4', '#00FFFF'])
|
||||
cm_bright_2 = ListedColormap(['#FF69B4', '#FF1493'])
|
||||
|
||||
def main():
|
||||
X, y = make_classification(
|
||||
n_samples=500,
|
||||
n_features=2,
|
||||
n_redundant=0,
|
||||
n_informative=2,
|
||||
random_state=0,
|
||||
n_clusters_per_class=1)
|
||||
rng = np.random.RandomState(2)
|
||||
X += 2 * rng.uniform(size=X.shape)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=10, random_state=40)
|
||||
|
||||
# модели на основе сгенерированных данных
|
||||
my_linear_regression(X_train, X_test, y_train, y_test)
|
||||
my_perceptron(X_train, X_test, y_train, y_test)
|
||||
my_poly_ridge(X_train, X_test, y_train, y_test)
|
||||
|
||||
|
||||
# Линейная регрессия
|
||||
def my_linear_regression(X_train, X_test, y_train, y_test):
|
||||
lin_reg_model = LinearRegression() # создание модели регрессии
|
||||
lin_reg_model.fit(X_train, y_train) # обучение
|
||||
y_pred = lin_reg_model.predict(X_test) # предсказание по тестовым даннным
|
||||
|
||||
# вывод в консоль
|
||||
print()
|
||||
print('===> Линейная регрессия <===')
|
||||
print('Оценка точности:')
|
||||
print('MAE:', mean_absolute_error(y_test, y_pred))
|
||||
print('MSE:', mean_squared_error(y_test, y_pred))
|
||||
print()
|
||||
|
||||
# вывод в график
|
||||
plt.title('Линейная регрессия')
|
||||
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright_1)
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright_2, alpha=0.8)
|
||||
plt.plot(X_test, y_pred, color='red', linewidth=1)
|
||||
plt.savefig('1_linear_regression.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
# Персептрон
|
||||
def my_perceptron(X_train, X_test, y_train, y_test):
|
||||
perceptron_model = Perceptron()
|
||||
perceptron_model.fit(X_train, y_train)
|
||||
y_pred = perceptron_model.predict(X_test)
|
||||
|
||||
# вывод в консоль
|
||||
print()
|
||||
print('===> Персептрон <===')
|
||||
print('Оценка точности:')
|
||||
print('По тренировочным данным: ', perceptron_model.score(X_train, y_train))
|
||||
print('По тестовым данным: ', accuracy_score(y_test, y_pred))
|
||||
print()
|
||||
|
||||
# вывод в график
|
||||
plt.title('Персептрон')
|
||||
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright_1)
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright_2, alpha=0.8)
|
||||
plt.plot(X_test, y_pred, color='red', linewidth=1)
|
||||
plt.savefig('2_perceptron.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
# Гребневая полиномиальная регрессия (степень=4, alpha=1.0)
|
||||
def my_poly_ridge(X_train, X_test, y_train, y_test):
|
||||
poly_rige_model = make_pipeline(PolynomialFeatures(degree=4), Ridge(alpha=1.0))
|
||||
poly_rige_model.fit(X_train, y_train)
|
||||
y_pred = poly_rige_model.predict(X_test)
|
||||
|
||||
# вывод в консоль
|
||||
print()
|
||||
print('===> Гребневая полиномиальная регрессия <===')
|
||||
print('Оценка точности:')
|
||||
print('MAE:', mean_absolute_error(y_test, y_pred))
|
||||
print('MSE:', mean_squared_error(y_test, y_pred))
|
||||
print()
|
||||
|
||||
# вывод в график
|
||||
plt.title('Гребневая полиномиальная регрессия')
|
||||
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright_1)
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright_2, alpha=0.8)
|
||||
plt.plot(X_test, y_pred, color='red', linewidth=1)
|
||||
plt.savefig('3_poly_ridge.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
main()
|
Loading…
Reference in New Issue
Block a user