kamyshov_danila_lab_7 is done
This commit is contained in:
parent
bcc00fa6a5
commit
b65d478378
15
kamyshov_danila_lab_7/A.txt
Normal file
15
kamyshov_danila_lab_7/A.txt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
Once upon a time in a quaint village nestled between rolling hills and meandering streams, there lived a remarkable cat named Whiskers. Whiskers was no ordinary feline; he was a cat with a penchant for adventure and a flair for fashion. His most prized possession was a pair of sleek, knee-high leather boots that made him the talk of the town.
|
||||||
|
|
||||||
|
Whiskers' boots weren't just for show—they were his ticket to exploring the world beyond the cozy village. One day, a call for help echoed through the cobbled streets. The villagers were in distress, plagued by a mischievous band of mice that had taken residence in their barns and pantries.
|
||||||
|
|
||||||
|
Our daring cat, armed with his trusty boots and a heart full of courage, stepped forward to offer his services. The villagers were skeptical at first. After all, Whiskers was just a cat. But when he donned his iconic boots, an air of determination surrounded him, and doubts quickly transformed into hope.
|
||||||
|
|
||||||
|
With each step, Whiskers displayed an uncanny agility, darting through the fields and alleys in pursuit of the elusive mice. His boots, crafted by a skilled cobbler with a flair for the dramatic, not only protected his paws but also added a touch of sophistication to his every move.
|
||||||
|
|
||||||
|
The mischievous mice, unaware of the formidable opponent they were facing, soon found themselves outmatched by Whiskers' cunning strategy and lightning-quick reflexes. The villagers watched in awe as their unlikely hero in boots triumphed over the rodent invaders.
|
||||||
|
|
||||||
|
News of Whiskers' heroic deeds spread far and wide, reaching even the neighboring kingdoms. Soon, he became a legend—a cat in boots whose bravery knew no bounds. Whiskers, however, remained humble, always returning to his cozy village and the adoring villagers who had once doubted him.
|
||||||
|
|
||||||
|
As time passed, Whiskers continued to embark on daring adventures, his boots becoming a symbol of courage and resilience. The cat in boots became a beloved figure, not just in his village but across the entire realm.
|
||||||
|
|
||||||
|
And so, in the heart of that quaint village, Whiskers the cat in boots lived out his days, a living testament to the extraordinary things that can happen when courage and style come together in perfect harmony.
|
60
kamyshov_danila_lab_7/app.py
Normal file
60
kamyshov_danila_lab_7/app.py
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
import numpy as np
|
||||||
|
from keras.models import Sequential
|
||||||
|
from keras.layers import LSTM, Dense
|
||||||
|
|
||||||
|
# Загрузка текстового файла
|
||||||
|
file_path = "A.txt"
|
||||||
|
|
||||||
|
with open(file_path, "r", encoding="utf-8") as file:
|
||||||
|
text = file.read()
|
||||||
|
|
||||||
|
# Предобработка данных
|
||||||
|
chars = sorted(list(set(text)))
|
||||||
|
char_indices = {char: i for i, char in enumerate(chars)}
|
||||||
|
indices_char = {i: char for i, char in enumerate(chars)}
|
||||||
|
|
||||||
|
maxlen = 40
|
||||||
|
step = 3
|
||||||
|
sentences = []
|
||||||
|
next_chars = []
|
||||||
|
|
||||||
|
for i in range(0, len(text) - maxlen, step):
|
||||||
|
sentences.append(text[i : i + maxlen])
|
||||||
|
next_chars.append(text[i + maxlen])
|
||||||
|
|
||||||
|
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.uint8)
|
||||||
|
y = np.zeros((len(sentences), len(chars)), dtype=np.uint8)
|
||||||
|
|
||||||
|
for i, sentence in enumerate(sentences):
|
||||||
|
for t, char in enumerate(sentence):
|
||||||
|
x[i, t, char_indices[char]] = 1
|
||||||
|
y[i, char_indices[next_chars[i]]] = 1
|
||||||
|
|
||||||
|
# Определение модели RNN
|
||||||
|
model = Sequential()
|
||||||
|
model.add(LSTM(128, input_shape=(maxlen, len(chars))))
|
||||||
|
model.add(Dense(len(chars), activation="softmax"))
|
||||||
|
|
||||||
|
model.compile(loss="categorical_crossentropy", optimizer="adam")
|
||||||
|
|
||||||
|
# Обучение модели
|
||||||
|
model.fit(x, y, batch_size=128, epochs=20)
|
||||||
|
|
||||||
|
# Генерация текста
|
||||||
|
start_index = np.random.randint(0, len(text) - maxlen - 1)
|
||||||
|
seed_text = text[start_index : start_index + maxlen]
|
||||||
|
|
||||||
|
generated_text = seed_text
|
||||||
|
for i in range(400):
|
||||||
|
x_pred = np.zeros((1, maxlen, len(chars)))
|
||||||
|
for t, char in enumerate(seed_text):
|
||||||
|
x_pred[0, t, char_indices[char]] = 1
|
||||||
|
|
||||||
|
preds = model.predict(x_pred, verbose=0)[0]
|
||||||
|
next_index = np.argmax(preds)
|
||||||
|
next_char = indices_char[next_index]
|
||||||
|
|
||||||
|
generated_text += next_char
|
||||||
|
seed_text = seed_text[1:] + next_char
|
||||||
|
|
||||||
|
print(generated_text)
|
28
kamyshov_danila_lab_7/readme.md
Normal file
28
kamyshov_danila_lab_7/readme.md
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
Общее задание:
|
||||||
|
Выбрать художественный текст (четные варианты – русскоязычный, нечетные – англоязычный) и обучить на нем рекуррентную нейронную сеть
|
||||||
|
для решения задачи генерации. Подобрать архитектуру и параметры так,чтобы приблизиться к максимально осмысленному результату. Далее
|
||||||
|
разбиться на пары четный-нечетный вариант, обменяться разработанными сетями и проверить, как архитектура товарища справляется с вашим текстом. В завершении подобрать компромиссную архитектуру, справляющуюся достаточно хорошо с обоими видами текстов.
|
||||||
|
|
||||||
|
Задание по вариантам:
|
||||||
|
нечетные вариант, художественный англоязычный текст
|
||||||
|
|
||||||
|
Чтобы Запустить приложение нужно запустить файл app.py
|
||||||
|
|
||||||
|
Технологии:
|
||||||
|
|
||||||
|
Python
|
||||||
|
TensorFlow (библиотека для машинного обучения)
|
||||||
|
Keras (интерфейс высокого уровня для построения нейронных сетей)
|
||||||
|
Описание работы программы:
|
||||||
|
|
||||||
|
Загружает художественный текст из текстового файла.
|
||||||
|
Проводит предобработку текста, создавая последовательности символов для обучения модели.
|
||||||
|
Строит рекуррентную нейронную сеть с использованием LSTM (долгой краткосрочной памяти).
|
||||||
|
Обучает модель на предоставленных данных.
|
||||||
|
Генерирует новый текст, начиная с случайной подстроки обучающего текста.
|
||||||
|
Входные данные:
|
||||||
|
|
||||||
|
Текстовый файл с художественным текстом (путь к файлу задается переменной file_path).
|
||||||
|
Выходные данные:
|
||||||
|
|
||||||
|
Сгенерированный текст на основе обученной модели.
|
Loading…
Reference in New Issue
Block a user