lab 2 is ready

This commit is contained in:
Дмитрий Александров 2023-10-05 18:13:38 +04:00
parent 5d8a090a38
commit ae454ae9ef
3 changed files with 25 additions and 427 deletions

View File

@ -1,17 +1,14 @@
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression, RandomizedLasso
from sklearn.feature_selection import RFE from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
import numpy as np import numpy as np
import random import random as rand
from alexandrov_dmitrii_lab_2.rand_lasso import RandomizedLasso
figure = plt.figure(1, figsize=(16, 9)) figure = plt.figure(1, figsize=(16, 9))
axis = figure.subplots(1, 4) axis = figure.subplots(1, 4)
col = 0 col = 0
y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
def rank_to_dict(ranks, names, n_features): def rank_to_dict(ranks, names, n_features):
@ -35,26 +32,29 @@ def createView(key, val):
def start(): def start():
np.random.seed(random.randrange(50)) np.random.seed(rand.randint(0, 50))
size = 750 size = 750
n_features = 10 n_features = 14
X = np.random.uniform(0, 1, (size, n_features)) X = np.random.uniform(0, 1, (size, n_features))
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 + Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1)) 10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
lr = LinearRegression() lr = LinearRegression()
rl = RandomizedLasso() rl = RandomizedLasso()
rfe = RFE(estimator=SVR(kernel="linear"), n_features_to_select=n_features) rfe = RFE(estimator=LinearRegression(), n_features_to_select=1)
lr.fit(X, Y) lr.fit(X, Y)
rl.fit(X, Y) rl.fit(X, Y)
rfe.fit(X, Y) rfe.fit(X, Y)
names = ["x%s" % i for i in range(1, n_features + 1)] names = ["x%s" % i for i in range(1, n_features + 1)]
rfe_res = rfe.ranking_
for i in range(rfe_res.size):
rfe_res[i] = 14 - rfe_res[i]
ranks = {"Linear regression": rank_to_dict(lr.coef_, names, n_features), ranks = {"Linear regression": rank_to_dict(lr.coef_, names, n_features),
"Random lasso": rank_to_dict(rl.scores_, names, n_features), "Random lasso": rank_to_dict(rl.scores_, names, n_features),
"RFE": rank_to_dict(rfe.estimator_.coef_, names, n_features)} "RFE": rank_to_dict(rfe_res, names, n_features)}
mean = {} mean = {}

View File

@ -1,399 +0,0 @@
import numbers
import warnings
from abc import ABCMeta, abstractmethod
import numpy as np
import scipy.sparse as sp
import six
from joblib import Memory, Parallel, delayed
from scipy.interpolate import interp1d
from sklearn.preprocessing import normalize as f_normalize
from sklearn.base import BaseEstimator
from sklearn.exceptions import ConvergenceWarning
from sklearn.feature_selection import SelectorMixin
from sklearn.linear_model import lars_path, LassoLarsIC
from sklearn.utils import check_X_y, check_random_state, safe_mask, check_array
__all__ = ['RandomizedLasso']
from sklearn.utils.sparsefuncs import inplace_column_scale, mean_variance_axis
from sklearn.utils.validation import check_is_fitted, as_float_array, FLOAT_DTYPES
def _preprocess_data(X, y, fit_intercept, normalize=False, copy=True,
sample_weight=None, return_mean=False):
"""
Centers data to have mean zero along axis 0. If fit_intercept=False or if
the X is a sparse matrix, no centering is done, but normalization can still
be applied. The function returns the statistics necessary to reconstruct
the input data, which are X_offset, y_offset, X_scale, such that the output
X = (X - X_offset) / X_scale
X_scale is the L2 norm of X - X_offset. If sample_weight is not None,
then the weighted mean of X and y is zero, and not the mean itself. If
return_mean=True, the mean, eventually weighted, is returned, independently
of whether X was centered (option used for optimization with sparse data in
coordinate_descend).
This is here because nearly all linear models will want their data to be
centered. This function also systematically makes y consistent with X.dtype
"""
if isinstance(sample_weight, numbers.Number):
sample_weight = None
X = check_array(X, copy=copy, accept_sparse=['csr', 'csc'],
dtype=FLOAT_DTYPES)
y = np.asarray(y, dtype=X.dtype)
if fit_intercept:
if sp.issparse(X):
X_offset, X_var = mean_variance_axis(X, axis=0)
if not return_mean:
X_offset[:] = X.dtype.type(0)
if normalize:
X_var *= X.shape[0]
X_scale = np.sqrt(X_var, X_var)
del X_var
X_scale[X_scale == 0] = 1
inplace_column_scale(X, 1. / X_scale)
else:
X_scale = np.ones(X.shape[1], dtype=X.dtype)
else:
X_offset = np.average(X, axis=0, weights=sample_weight)
X -= X_offset
if normalize:
X, X_scale = f_normalize(X, axis=0, copy=False,
return_norm=True)
else:
X_scale = np.ones(X.shape[1], dtype=X.dtype)
y_offset = np.average(y, axis=0, weights=sample_weight)
y = y - y_offset
else:
X_offset = np.zeros(X.shape[1], dtype=X.dtype)
X_scale = np.ones(X.shape[1], dtype=X.dtype)
if y.ndim == 1:
y_offset = X.dtype.type(0)
else:
y_offset = np.zeros(y.shape[1], dtype=X.dtype)
return X, y, X_offset, y_offset, X_scale
def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200,
n_jobs=1, verbose=False, pre_dispatch='3*n_jobs',
random_state=None, sample_fraction=.75, **params):
random_state = check_random_state(random_state)
# We are generating 1 - weights, and not weights
n_samples, n_features = X.shape
if not (0 < scaling < 1):
raise ValueError(
"'scaling' should be between 0 and 1. Got %r instead." % scaling)
scaling = 1. - scaling
scores_ = 0.0
for active_set in Parallel(n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)(
delayed(estimator_func)(
X, y, weights=scaling * random_state.randint(
0, 2, size=(n_features,)),
mask=(random_state.rand(n_samples) < sample_fraction),
verbose=max(0, verbose - 1),
**params)
for _ in range(n_resampling)):
scores_ += active_set
scores_ /= n_resampling
return scores_
class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator,
SelectorMixin)):
"""Base class to implement randomized linear models for feature selection
This implements the strategy by Meinshausen and Buhlman:
stability selection with randomized sampling, and random re-weighting of
the penalty.
"""
@abstractmethod
def __init__(self):
pass
_preprocess_data = staticmethod(_preprocess_data)
def fit(self, X, y):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data.
y : array-like, shape = [n_samples]
Target values. Will be cast to X's dtype if necessary
Returns
-------
self : object
Returns an instance of self.
"""
X, y = check_X_y(X, y, ['csr', 'csc'], y_numeric=True,
ensure_min_samples=2, estimator=self)
X = as_float_array(X, copy=False)
n_samples, n_features = X.shape
X, y, X_offset, y_offset, X_scale = \
self._preprocess_data(X, y, self.fit_intercept, self.normalize)
estimator_func, params = self._make_estimator_and_params(X, y)
memory = self.memory
if memory is None:
memory = Memory(cachedir=None, verbose=0)
elif isinstance(memory, six.string_types):
memory = Memory(cachedir=memory, verbose=0)
elif not isinstance(memory, Memory):
raise ValueError("'memory' should either be a string or"
" a sklearn.externals.joblib.Memory"
" instance, got 'memory={!r}' instead.".format(
type(memory)))
scores_ = memory.cache(
_resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch']
)(
estimator_func, X, y,
scaling=self.scaling, n_resampling=self.n_resampling,
n_jobs=self.n_jobs, verbose=self.verbose,
pre_dispatch=self.pre_dispatch, random_state=self.random_state,
sample_fraction=self.sample_fraction, **params)
if scores_.ndim == 1:
scores_ = scores_[:, np.newaxis]
self.all_scores_ = scores_
self.scores_ = np.max(self.all_scores_, axis=1)
return self
def _make_estimator_and_params(self, X, y):
"""Return the parameters passed to the estimator"""
raise NotImplementedError
def _get_support_mask(self):
"""Get the boolean mask indicating which features are selected.
Returns
-------
support : boolean array of shape [# input features]
An element is True iff its corresponding feature is selected
for retention.
"""
check_is_fitted(self, 'scores_')
return self.scores_ > self.selection_threshold
###############################################################################
# Randomized lasso: regression settings
def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False,
precompute=False, eps=np.finfo(np.float).eps,
max_iter=500):
X = X[safe_mask(X, mask)]
y = y[mask]
# Center X and y to avoid fit the intercept
X -= X.mean(axis=0)
y -= y.mean()
alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float64))
X = (1 - weights) * X
with warnings.catch_warnings():
warnings.simplefilter('ignore', ConvergenceWarning)
alphas_, _, coef_ = lars_path(X, y,
Gram=precompute, copy_X=False,
copy_Gram=False, alpha_min=np.min(alpha),
method='lasso', verbose=verbose,
max_iter=max_iter, eps=eps)
if len(alpha) > 1:
if len(alphas_) > 1: # np.min(alpha) < alpha_min
interpolator = interp1d(alphas_[::-1], coef_[:, ::-1],
bounds_error=False, fill_value=0.)
scores = (interpolator(alpha) != 0.0)
else:
scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool)
else:
scores = coef_[:, -1] != 0.0
return scores
class RandomizedLasso(BaseRandomizedLinearModel):
"""Randomized Lasso.
Randomized Lasso works by subsampling the training data and
computing a Lasso estimate where the penalty of a random subset of
coefficients has been scaled. By performing this double
randomization several times, the method assigns high scores to
features that are repeatedly selected across randomizations. This
is known as stability selection. In short, features selected more
often are considered good features.
Parameters
----------
alpha : float, 'aic', or 'bic', optional
The regularization parameter alpha parameter in the Lasso.
Warning: this is not the alpha parameter in the stability selection
article which is scaling.
scaling : float, optional
The s parameter used to randomly scale the penalty of different
features.
Should be between 0 and 1.
sample_fraction : float, optional
The fraction of samples to be used in each randomized design.
Should be between 0 and 1. If 1, all samples are used.
n_resampling : int, optional
Number of randomized models.
selection_threshold : float, optional
The score above which features should be selected.
fit_intercept : boolean, optional
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default True
If True, the regressors X will be normalized before regression.
This parameter is ignored when `fit_intercept` is set to False.
When the regressors are normalized, note that this makes the
hyperparameters learned more robust and almost independent of
the number of samples. The same property is not valid for
standardized data. However, if you wish to standardize, please
use `preprocessing.StandardScaler` before calling `fit` on an
estimator with `normalize=False`.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up calculations.
If set to 'auto' let us decide.
The Gram matrix can also be passed as argument, but it will be used
only for the selection of parameter alpha, if alpha is 'aic' or 'bic'.
max_iter : integer, optional
Maximum number of iterations to perform in the Lars algorithm.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the 'tol' parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
n_jobs : integer, optional
Number of CPUs to use during the resampling. If '-1', use
all the CPUs
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
memory : None, str or object with the joblib.Memory interface, optional \
(default=None)
Used for internal caching. By default, no caching is done.
If a string is given, it is the path to the caching directory.
Attributes
----------
scores_ : array, shape = [n_features]
Feature scores between 0 and 1.
all_scores_ : array, shape = [n_features, n_reg_parameter]
Feature scores between 0 and 1 for all values of the regularization \
parameter. The reference article suggests ``scores_`` is the max of \
``all_scores_``.
References
----------
Stability selection
Nicolai Meinshausen, Peter Buhlmann
Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010
DOI: 10.1111/j.1467-9868.2010.00740.x
See also
--------
RandomizedLogisticRegression, Lasso, ElasticNet
"""
def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75,
n_resampling=200, selection_threshold=.25,
fit_intercept=True, verbose=False,
normalize=True, precompute='auto',
max_iter=500,
eps=np.finfo(np.float).eps, random_state=None,
n_jobs=1, pre_dispatch='3*n_jobs',
memory=None):
self.alpha = alpha
self.scaling = scaling
self.sample_fraction = sample_fraction
self.n_resampling = n_resampling
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.precompute = precompute
self.eps = eps
self.random_state = random_state
self.n_jobs = n_jobs
self.selection_threshold = selection_threshold
self.pre_dispatch = pre_dispatch
self.memory = memory
def _make_estimator_and_params(self, X, y):
alpha = self.alpha
if isinstance(alpha, six.string_types) and alpha in ('aic', 'bic'):
model = LassoLarsIC(precompute=self.precompute,
criterion=self.alpha,
max_iter=self.max_iter,
eps=self.eps)
model.fit(X, y)
self.alpha_ = alpha = model.alpha_
precompute = self.precompute
# A precomputed Gram array is useless, since _randomized_lasso
# change X a each iteration
if hasattr(precompute, '__array__'):
precompute = 'auto'
assert precompute in (True, False, None, 'auto')
return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter,
eps=self.eps,
precompute=precompute)

View File

@ -8,45 +8,42 @@
* Рекурсивное сокращение признаков (Recursive Feature Elimination RFE) * Рекурсивное сокращение признаков (Recursive Feature Elimination RFE)
### Запуск программы ### Запуск программы
Файл lab2.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует, Программа работает на Python 3.7, поскольку только в нём можно подключить нужную версию библиотеки scikit-learn, которая ещё содержит RandomizedLasso
Файл lab2.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы ### Описание программы
Файл rand_lasso.py содержит реализацию RandomizedLasso, которая была 'устарена' со skilearn 0.19 и удалена с 0.21. Код взят с их гита, версии 0.19.
Пробовались готовые решения с гита, однако они были либо совсем нерабочими, либо у их результатов не прослеживалось корреляции с остальными моделями, что говорило о их некачественности.
Файл lab2.py содержит непосредственно программу. Файл lab2.py содержит непосредственно программу.
Программа создаёт набор данных с 10 признаками для последующего их ранжирования, и обрабатывает тремя моделями по варианту. Программа создаёт набор данных с 10 признаками для последующего их ранжирования, и обрабатывает тремя моделями по варианту.
Программа строит столбчатые диаграммы, которые показывают как распределились оценки важности признаков, и выводит в консоль отсортированные по убыванию важности признаки. Программа строит столбчатые диаграммы, которые показывают как распределились оценки важности признаков, и выводит в консоль отсортированные по убыванию важности признаки.
Таким образом можно легко определить наиважнейшие признаки. Таким образом можно легко определить наиважнейшие признаки.
Сперва в качестве оценщика в модели RFE использовалась линейная регрессия. Однако тогда результаты были идентичны с результатами обычной модели линейной регрессии.
Поэтому оценщик был заменён на предложенную в примерах sklearn модель SVR.
### Результаты тестирования ### Результаты тестирования
По результатам тестирования, можно сказать следующее: По результатам тестирования, можно сказать следующее:
* линейная регрессия и рекурсивное сокращение признаков показывают близкие значения, которые, тем не менее, расходятся в деталях. * линейная регрессия показывает хорошие результаты, выделяет все 9 значимых признаков.
* случайное лассо показывает сильно завышенные результаты, однако они более-менее коррелируют с результатами других моделей. * случайное лассо справляется хуже других моделей, иногда выделяя шумовые признаки в значимые, а значимые - в шумовые.
* средние значения позволяют выявить взвешенный результат. * рекурсивное сокращение признаков показывает хорошие результаты, правильно правильно выделяя 9 самых значимых признаков.
* определить, какая модель ближе к действительности однозначно сказать невозможно из-за разброса. * хотя линейная регрессия и рекурсивное сокращение признаков правильно выделяют значимые признаки, саму значимость они оценивают по-разному.
* какая модель (её реализация) дальше всего от действительности наоборот немного очевидно. * среднее значение позволяет c хорошей уверенностью определять истинные значимые признаки.
Итого. Если необходимо просто ранжирование, достаточно взять модель RFE, однако, если необходимо анализировать признаки по коэффициентам, имея меру (коэффициенты), то брать нужно линейную регрессию. Случайное лассо лучше не надо.
Пример консольных результатов: Пример консольных результатов:
>Linear regression >Linear regression
>[('x4', 1.0), ('x1', 0.73), ('x2', 0.73), ('x5', 0.38), ('x10', 0.05), ('x6', 0.03), ('x9', 0.03), ('x3', 0.01), ('x7', 0.01), ('x8', 0.0)] >[('x1', 1.0), ('x4', 0.69), ('x2', 0.61), ('x11', 0.59), ('x3', 0.51), ('x13', 0.48), ('x5', 0.19), ('x12', 0.19), ('x14', 0.12), ('x8', 0.03), ('x6', 0.02), ('x10', 0.01), ('x7', 0.0), ('x9', 0.0)]
>Random lasso >Random lasso
>[('x1', 1.0), ('x2', 1.0), ('x4', 1.0), ('x5', 1.0), ('x10', 0.97), ('x6', 0.89), ('x9', 0.82), ('x3', 0.55), ('x7', 0.36), ('x8', 0.0)] >[('x5', 1.0), ('x4', 0.76), ('x2', 0.74), ('x1', 0.72), ('x14', 0.44), ('x12', 0.32), ('x11', 0.28), ('x8', 0.22), ('x6', 0.17), ('x3', 0.08), ('x7', 0.02), ('x13', 0.02), ('x9', 0.01), ('x10', 0.0)]
>RFE >RFE
>[('x4', 1.0), ('x1', 0.86), ('x2', 0.8), ('x5', 0.44), ('x10', 0.08), ('x6', 0.05), ('x7', 0.04), ('x3', 0.01), ('x8', 0.01), ('x9', 0.0)] >[('x4', 1.0), ('x1', 0.92), ('x11', 0.85), ('x2', 0.77), ('x3', 0.69), ('x13', 0.62), ('x5', 0.54), ('x12', 0.46), ('x14', 0.38), ('x8', 0.31), ('x6', 0.23), ('x10', 0.15), ('x7', 0.08), ('x9', 0.0)]
>Mean >Mean
>[('x4', 1.0), ('x1', 0.86), ('x2', 0.84), ('x5', 0.61), ('x10', 0.37), ('x6', 0.32), ('x9', 0.28), ('x3', 0.19), ('x7', 0.14), ('x8', 0.0)] >[('x1', 0.88), ('x4', 0.82), ('x2', 0.71), ('x5', 0.58), ('x11', 0.57), ('x3', 0.43), ('x13', 0.37), ('x12', 0.32), ('x14', 0.31), ('x8', 0.19), ('x6', 0.14), ('x10', 0.05), ('x7', 0.03), ('x9', 0.0)]
По данным результатам можно заключить, что наиболее влиятельные признаки по убыванию: x4, x1, x2, x5. По данным результатам можно заключить, что наиболее влиятельные признаки по убыванию: x1, x4, x2, x5.