diff --git a/shadaev_anton_lab_1/main.py b/shadaev_anton_lab_1/main.py index 9c4343d..63e4924 100644 --- a/shadaev_anton_lab_1/main.py +++ b/shadaev_anton_lab_1/main.py @@ -3,43 +3,35 @@ import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import Perceptron from sklearn.neural_network import MLPClassifier -from sklearn.model_selection import train_test_split, learning_curve +from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Наполнение искусственными данными rs = np.random.RandomState(42) X, y = make_classification(n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, - n_clusters_per_class=1) + n_clusters_per_class=1) # Обучающие и тестовые наборы данных X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=rs) # Список моделей для обучения models = [ - ('Персептрон', Perceptron()), - ('MLP (10 нейронов)', MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)), - ('MLP (100 нейронов)', MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs)) + ('Перцептрон', Perceptron()), + ('MLP (10 нейронов)', MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)), + ('MLP (100 нейронов)', MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs)) ] fig, axs = plt.subplots(1, len(models), figsize=(12, 4)) # Визуализация графиков for i, (name, model) in enumerate(models): - model.fit(X_train, y_train) - y_pred = model.predict(X_test) - accuracy = accuracy_score(y_test, y_pred) + model.fit(X_train, y_train) + y_pred = model.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) - # Построение кривых обуч ения - train_sizes, train_scores, valid_scores = learning_curve( - model, X, y, train_sizes=[50, 80, 110], cv=5) - axs[i].plot(train_sizes, train_scores.mean(axis=1), 'o-', color="r", - label="Оценка обучения") - axs[i].plot(train_sizes, valid_scores.mean(axis=1), 'o-', color="g", - label="Оценка кросс-валидации") - axs[i].set_title(f'{name} (Точность: {accuracy:.2f})') - axs[i].set_xlabel("Training examples") - axs[i].set_ylabel("Score") - axs[i].legend(loc="best") - axs[i].grid() + axs[i].scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap=plt.cm.Paired) + axs[i].set_title(f'{name} (Accuracy: {accuracy:.2f})') + axs[i].set_xlabel("Размер обучающего набора") + axs[i].set_ylabel("Средняя точность модели") plt.show() diff --git a/shadaev_anton_lab_1/myplot.png b/shadaev_anton_lab_1/myplot.png index b56a111..1eeb9b0 100644 Binary files a/shadaev_anton_lab_1/myplot.png and b/shadaev_anton_lab_1/myplot.png differ