lab7 ready

This commit is contained in:
Anastasia Malkova 2023-11-17 01:50:49 +04:00
parent a8c58683dd
commit 6992d59b4a
10 changed files with 1358 additions and 0 deletions

View File

@ -0,0 +1,31 @@
# Лабораторная работа №7
> Рекуррентная нейронная сеть и задача генерации текста
### Как запустить лабораторную работу
1. Установить python, conda, numpy, torch
1. Запустить команду `python main.py` в корне проекта
### Использованные технологии
* Язык программирования `python`
* Библиотеки `conda, numpy, torch`
* Среда разработки `PyCharm`
### Что делает программа?
* Считывает данные из файла
* Создает словарь всех символов и превращает текст в индексы(числа)
* Генерирует батчи из текста
* Создает и обучает рекуррентную нейронную сеть(RNN)
* Генерирует новый текст
* Измеряет ошибку
#### Запуск
* На первых прогонаx высокий показатель ошибки и, соответственно, качество текста плохое
![starter result](starter_result.png)
* Через 10-15 минут после обучения ошибка дошла до 0.6, для такой ошибки качество текста нормальное
![progress result](progress_result.png)

View File

@ -0,0 +1,10 @@
SEQ_LEN = 256
BATCH_SIZE = 16
NUMBER_OF_LINES = 300
PREDICTION_LEN = 200
PREDICTION_LEN_START = 1000
N_EPOCHS = 50000
LOSS_AVG_MAX = 50
HIDDEN_SIZE = 128
EMBEDDING_SIZE = 128
N_LAYERS = 2

View File

@ -0,0 +1,23 @@
import numpy as np
from collections import Counter
def create_data():
with open('train_text.txt', encoding="utf8") as text_file:
text_sample = text_file.readlines()
text_sample = ' '.join(text_sample)
return text_sample
def text_to_seq(text_sample=create_data()):
char_counts = Counter(text_sample)
char_counts = sorted(char_counts.items(), key=lambda x: x[1], reverse=True)
sorted_chars = [char for char, _ in char_counts]
char_to_idx = {char: index for index, char in enumerate(sorted_chars)}
idx_to_char = {v: k for k, v in char_to_idx.items()}
sequence = np.array([char_to_idx[char] for char in text_sample])
return sequence, char_to_idx, idx_to_char

View File

@ -0,0 +1,39 @@
import torch
import torch.nn.functional as F
import numpy as np
from config import BATCH_SIZE, SEQ_LEN, PREDICTION_LEN
def get_batch(sequence):
trains = []
targets = []
for _ in range(BATCH_SIZE):
batch_start = np.random.randint(0, len(sequence) - SEQ_LEN)
chunk = sequence[batch_start: batch_start + SEQ_LEN]
train = torch.LongTensor(chunk[:-1]).view(-1, 1)
target = torch.LongTensor(chunk[1:]).view(-1, 1)
trains.append(train)
targets.append(target)
return torch.stack(trains, dim=0), torch.stack(targets, dim=0)
def evaluate(model, char_to_idx, idx_to_char, device, start_text=' ', prediction_len=PREDICTION_LEN, temp=0.3):
hidden = model.init_hidden()
idx_input = [char_to_idx[char] for char in start_text]
train = torch.LongTensor(idx_input).view(-1, 1, 1).to(device)
predicted_text = start_text
_, hidden = model(train, hidden)
inp = train[-1].view(-1, 1, 1)
for i in range(prediction_len):
output, hidden = model(inp.to(device), hidden)
output_logits = output.cpu().data.view(-1)
p_next = F.softmax(output_logits / temp, dim=-1).detach().cpu().data.numpy()
top_index = np.random.choice(len(char_to_idx), p=p_next)
inp = torch.LongTensor([top_index]).view(-1, 1, 1).to(device)
predicted_char = idx_to_char[top_index]
predicted_text += predicted_char
return predicted_text

View File

@ -0,0 +1,24 @@
from config import PREDICTION_LEN_START
from data import text_to_seq
from generation import evaluate
from train import create_parameters, training
if __name__ == '__main__':
sequence, char_to_idx, idx_to_char = text_to_seq()
criterion, scheduler, n_epochs, loss_avg, device, model, optimizer = create_parameters(idx_to_char)
training(n_epochs, model, sequence, device, criterion, optimizer, loss_avg, scheduler, char_to_idx, idx_to_char)
model.eval()
print(evaluate(
model,
char_to_idx,
idx_to_char,
device = device,
temp=0.3,
prediction_len=PREDICTION_LEN_START,
start_text='. '
)
)

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

View File

@ -0,0 +1,30 @@
import torch
import torch.nn as nn
class TextRNN(nn.Module):
def __init__(self, input_size, hidden_size, embedding_size, device, n_layers=1):
super(TextRNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.embedding_size = embedding_size
self.n_layers = n_layers
self.device = device
self.encoder = nn.Embedding(self.input_size, self.embedding_size)
self.lstm = nn.LSTM(self.embedding_size, self.hidden_size, self.n_layers)
self.dropout = nn.Dropout(0.2)
self.fc = nn.Linear(self.hidden_size, self.input_size)
def forward(self, x, hidden):
x = self.encoder(x).squeeze(2)
out, (ht1, ct1) = self.lstm(x, hidden)
out = self.dropout(out)
x = self.fc(out)
return x, (ht1, ct1)
def init_hidden(self, batch_size=1):
return (torch.zeros(self.n_layers, batch_size, self.hidden_size, requires_grad=True).to(self.device),
torch.zeros(self.n_layers, batch_size, self.hidden_size, requires_grad=True).to(self.device))

View File

@ -0,0 +1,58 @@
import torch
import torch.nn as nn
import numpy as np
from text_rnn import TextRNN
from config import BATCH_SIZE, N_EPOCHS, LOSS_AVG_MAX, HIDDEN_SIZE, EMBEDDING_SIZE, N_LAYERS
from generation import get_batch, evaluate
def create_parameters(idx_to_char):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = TextRNN(input_size=len(idx_to_char), hidden_size=HIDDEN_SIZE, embedding_size=EMBEDDING_SIZE, n_layers=N_LAYERS, device=device)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, amsgrad=True)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
patience=5,
verbose=True,
factor=0.5
)
n_epochs = N_EPOCHS
loss_avg = []
return criterion, scheduler, n_epochs, loss_avg, device, model, optimizer
def check_loss(loss_avg, scheduler, model, char_to_idx, idx_to_char, device):
if len(loss_avg) >= LOSS_AVG_MAX:
mean_loss = np.mean(loss_avg)
print(f'Loss: {mean_loss}')
scheduler.step(mean_loss)
loss_avg = []
model.eval()
predicted_text = evaluate(model, char_to_idx, idx_to_char, device=device)
print(predicted_text)
return loss_avg
def training(n_epochs, model, sequence, device, criterion, optimizer, loss_avg, scheduler, char_to_idx, idx_to_char):
for epoch in range(n_epochs):
model.train()
train, target = get_batch(sequence)
train = train.permute(1, 0, 2).to(device)
target = target.permute(1, 0, 2).to(device)
hidden = model.init_hidden(BATCH_SIZE)
output, hidden = model(train, hidden)
loss = criterion(output.permute(1, 2, 0), target.squeeze(-1).permute(1, 0))
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_avg.append(loss.item())
loss_avg = check_loss(loss_avg, scheduler, model, char_to_idx, idx_to_char, device)

File diff suppressed because it is too large Load Diff