From 4f72edc7ef5483afde3e1891efd7972d1c1e9a8c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=D0=9C=D0=B0=D1=80=D0=B8=D1=8F=20=D0=A8?= Date: Wed, 29 Nov 2023 22:30:49 +0300 Subject: [PATCH 1/2] shestakova_maria_lab_6 is ready --- shestakova_maria_lab_6/README.md | 28 ++ shestakova_maria_lab_6/res.png | Bin 0 -> 82320 bytes .../shestakova_maria_lab_7.py | 50 +++ shestakova_maria_lab_6/sleep.csv | 375 ++++++++++++++++++ 4 files changed, 453 insertions(+) create mode 100644 shestakova_maria_lab_6/README.md create mode 100644 shestakova_maria_lab_6/res.png create mode 100644 shestakova_maria_lab_6/shestakova_maria_lab_7.py create mode 100644 shestakova_maria_lab_6/sleep.csv diff --git a/shestakova_maria_lab_6/README.md b/shestakova_maria_lab_6/README.md new file mode 100644 index 0000000..5aae99c --- /dev/null +++ b/shestakova_maria_lab_6/README.md @@ -0,0 +1,28 @@ +### Задание: + +Использовать нейронную сеть MLPClassifier для данных из файла для задачи: предсказать, является качество сна на основе некоторых других признаков. + +### Технологии: + +Библиотека Scikit-learn, библиотека pandas + +### Что делает лабораторная: + +Лабораторная работа предсказывает качество сна, используя следующие признаки: уровень стресса, возраст, пол, уровень физической активности и категория индекса массы тела. + +### Как запустить: + +Лабораторная работа запускается в файле `shestakova_maria_lab_6.py` через Run: появляется вывод в консоли + +### Вывод: + +Консоль: + +![результат в консоли](res.png) + +Точность - показатель общей точности модели, который указывает на долю правильно классифицированных образцов в тестовой выборке. В данном случае, точность модели составляет примерно 97.33%, что является очень хорошим результатом + +Матрица ошибок показывает количество верно и неверно классифицированных образцов для каждого класса. В данном случае, матрица имеет размерность 6x6, где каждая строка представляет истинный класс, а каждый столбец представляет предсказанный класc. Значения в матрице указывают количество образцов, которые были классифицированы в соответствующих ячейках. +Из матрицы ошибок можно определить общее количество ошибок, сложив значения, которые находятся вне главной диагонали матрицы. Таким образом, получилось 2 ошибки + +Также выводится отчет о классификации, который содержит информацию о точности, полноте, F1-мере и поддержке для каждого класса diff --git a/shestakova_maria_lab_6/res.png b/shestakova_maria_lab_6/res.png new file mode 100644 index 0000000000000000000000000000000000000000..b770a6dfb68cd2825ecab87b4f73cbba38f1ea06 GIT binary patch literal 82320 zcmeEubyU>vw=N=$hzf|(5+WcVNJ$Nd(%p>`(jmkbVdfKW?)~g%KbzO8$}%KGR76-JW8(02HQKNGFUK-7GgnC9WImt9i7?K5 z-p5EFOJVn%Ib79Lk$}S1gKnPiR-5@J(jMdinlspp6!&S8CPj_iz* z)8*lb*uHq762=X8z_AX+{ zU+(xq7JZU?S>@ZyZ5#;|XQ*vQJThiQFvB)q51aFJO3d+Y8%*1J-6sjTlbB+_T4#6vz@PoABAELcUlva%xTLR>HWEF+79hY=WC-FX zQN&M>7#c8|Ac04Vz4Ir|WH?XYpCQl7$7o$5bD{WYI@Z}aIV|%p^Uv_SaT!QEAfyU0 zIx^wnV@ZNSjKrcZlFu_r2-L@shF&4{R=`n7f3QyqH`MjIGi|3!fkYdNGb7m_OUh-+ zGt%$24bcoRzq}Oq`o~w*_p}bLPUjmvnd|XBuRZhrF)g)sl&|6`Z^b0aSV1OCP@VId zC~M~7Jvvv3(|7rXnZ8NHlT_bbTLYaSR$*2>3)%&)C>SMKUi2})vhfci+)cA~f8tKF_$)|gH0skZ{{pA`oz&Y_GW(=3DHZJqxdfLOm$*Gv z3zH%Sh|bPjX^z4Zxrf(38{Q;F(c&nE#xL`|S)JRMBl4d!$vE?Au(*Jdy7aB3xa{*2 zth4v{cz9He9gKVDgotK%I+BWclSr`oaIliodZQHfqInIU-e@jzgSTxF z_u3dUar6T1?z=O@wDq>}ERZ{&vzBsTB8}i$Albd#qRO5hOqDURVl_l;@$Ryfs4#A~ zgk?JJim5BE{!8uj(|)Rbawws_j7VRc6*t};x3>Wak3-`rzkPdON`9L*%5<;9^aFW8 zbABoGD7pACt*+qVIo3JXZoiQK2ruKQ&#l!eM%L z{!>u%4Mk@2OHZ!6A;@|@^*rNw`L@v-b3N0Q*B9QC^piCPw|`Zfvzv3CyE-Rn%2XP1 z6hEfG7;!=NA~Qst@3le)3q^!LI|J5P4CSsIqW%>AdXZtjUaeEgc;} z9fWpTI+wahx^cFjEVBMY>VQ;}HeW18DMc|xLq`>%N}X4o=V;BB$j=!bd%rWQFkNdv zd62H}gl~mPnTm#_@taSGa|l&P0aYf!>f4Fb7 zU%szw^u8#BOGZ$m`T@e}GI6_ieM($A|IP6J8{>ce}?|#vde2#IwdzCergYIZBpp zm&sP^TK1dwn_1i3n|2Phh*_lND2s`U>9YycDj)W?rCw)VXBnv+>9yat7ZSh~&=Nq{ zSy!E_x@*T_S3Gffvwov&qiU@3d&c3`;r&zRQ;v(dfkA<7kAtNqZhgK5SDRC#$Z!x= zr_~Gf3e^fFO}VBVq5ML*Qn^^#AXNE!1JreIg}Y~~XS}B_86Mhy{jP)JkN6WFN5c&x zPp(C-Q6uZ3cSUxL$E_dXI%R@F{9=hTIHn9NNtpvJ!pO0B7F_AgqmCal$r?`6jo z>AW3vF5a8Qfiu95r%9&ieMEhneJ`G#t*);mE!OoSj&+ktpOw~q6FI!nZj5^mUoJ2dufg)PWVwtwuynR$c5XKI zQcC#qaHSih_q(O;-Y>ZC{dw}slOX<=WS^Nn>jcd#TyybEmRIf->V4|cn({hb`s+ix zH=g9y^lTv?=)*$k1^qUUyw$YT=5oJVUFv>qOzjK#cJqmJS25WuGSi#UDxOp#H{F%( zTxi4`^d}oXdhAH%RFvr&aeSwCus=jr~}8ZvGc>YKrl>*}&> zui5G}psX(x^&xpKWv2`8+Xb`76x-9BALsuV+Q@6ou~wc}7KxOXRg#~IJ9$mrT{wG~ z{d7Pe=U{uRo}@nROadkB7uT#(BE5ZkirZJ|WbZ=L+sf-kpRpe2l^A@zYJa7n=R)sf z?6Ek9u&v67guD9TCz{ISp=2{t+NZHcU9M59$Ac5h7b6+vS}&wsU$@+sWy-9xcxCtI z1D6h^!y0#|{UW4|e(88QX8E97G1-gRM8qT+<`s+lU{Rh*@%-u;A9Y%H(iC5-UC-xx zq|0SXTk%0%3Q41UGp4Ay;}qi0S2v7g_2MhHtM4y==6?a>l-Jj68uQ$F))EFI03J*> zLss9_(C>5nqtn-ni-*c@-5~U~s-#+wtzScG>2y}xS3APPS)Z-Vc{QNz%cA>V)Y(A8K_;iFG zIlMY5M)HJYvGpLdSXA;}>CxBb_GeKIA(7vI8dU#gT z=aQ48*Uj2{n&S9z*5$|8!{Xq|I8m-)L-!`1eL=)bXq9Khkl{|f`smt}{)|A?=GS5W zf}A2;6A_OT7o@tkruRh1bLwgb<;L-+!Laq?&5em-_`=j`Q{61x591x*!qY6$w{)6k z4v5oF7sEp5NdxJP{m2n3TV~VqaVq92;%;1i^4|IOYxoCzBOL2M@i?R8wI^@|2ASH;CIr56=_(b6(sE#i_l z(Db~*xKDDSo*&O&leF1#wOIlk8xYW2_o$@$oK^BW(Li>h%c<9^@Y!>XU>&^MMrx@l zO$qY|PSppqc#V!|+#6G22+{@F5)gsBvCx%!qNIey4vq=1aL!R-;ew-c;3a;J`mbZ@ zbGNY0|NI;q3oFPP3+MMa%HSRI6AoUOYks|-k9>)R5B|CWUY_aLf6hK1ntuMTbmMGDGHl8 z+H*ZNcQm!&^0art+y_h4Qy3iDTev=E@U*vca1r(tWBhrBFgV71%+1K~^AuNGF-Bb_ zRR$?XXA1@at~*?J7{!Sg7#KvI&7TOXKal=?IrvMA(aP1;Ntm14!^4Bi<1Uw@vn4mr zy?gh#@9=W-@^XSRI9x0e|+;_uhep}aF%kk2aj|W|9iTAU;NK6e_trdjp_M6 zM&j2n|NIn;vpA6`_g`}+P9!t_iWp2Ijr9W+P4EsD8RqBQB=~jf*E{Ao?sdSWA7EKX zV97m@)bu>JF-4e6-ZI|0gMX=JL7E`01Pp)wx+If+A;660df8y>9$+6;Fn3$HRyR6C~GPk!tN7g)-K(h!Qm0`W*b$VJ@@Sf8_KJYGt2-=6){W|LCz zbpBh!qNhnk*kOqBMwp4f45S}MI=%avHPwn!zrrcl#P2w(;dHBRnqB-?BX1pGvs@8M z_1SF~@Z6pySYl1{F`fSw5`23PH$ans&u**_dbnZTog^4`uO7RNMIm-$cQrpXVfxVY`dw{!97O5Y8GQqva=+n1K-A- z9B$ffPE;eV&imQWZ&Ig>(Kp#O!rr6l>K6?h8;13(>{hQ*-qw9|*Rp3{d*|02O5{=A zifG<>M$B~w*{fhm!8@H41TDBMsgj1*-3!+1mRoM93H-`sZ#pr%MJh zPALt4Mj@KeQzOMD@Mj}%U%0nBSQ-W`Zz!hNEW6?#2VdoUlRQl?)RP985kK4h(k2X7 zsBvC2e59YPcwNM4)_=;SSInz6A6!3^uU)uiPj{@@xoi<<^u%p#=&4t66RH+@Pz($C zfM_g%_>KFZJz@CMIexEd=R-w4NQY2u$>g%8dVZevTBdd6Py4kq&0k2o#tB7Cd8DnP zJr5k>rl$tJ*w*8Zd{A9x)Zn^f`jvo^hAkJm@-9e`69<*qTxwA5z-2pK?hV!+`r|LW=W>AOK@fv)#BVGIc#hE6l6a=SH(}Am# zHRYY^wvn~B)&e?-lOd-YcdJb#3yW;7tB0qb)5zB;-qLR)e`_~gKW@|nlORVQH^3j( zpn|z-+ZqoF9c!d+8&q|PAI+YJJ9&x2_A}^f&Y48##g>MNpWNz&I!YFrK}S^)&+wxA z>U;~d3wO0CPjmEl_sw4P6pYk@-QAKb6>F2F!M=qr=~k+tqmUJ6;y1q3l`!8ZgTCu? z4ew`?!oK#lH=%RhX)3V zj6^80roG_}Tz7(l@;u}#n)EpWBcIhaoh@=#Sr2BX565<)jDur(cx;Ap+_Avh_Kom_qCyR z`}eWvRyyww&GbfRt!7{x4^aJe15`13a$;orfh>eST~mM^xvbZ0F214IN`B`o`m7iI zapZ1sa0(tv|15)~9Fv-j30&+Bt{hZ$MC7Io$zYw4yiJYI(T||L`kAaVa|Cx!v)ZCs zc&2tL7`M-ryzO5Vdc_dQwlDT#5Aq@;4jgi^`B+GpGd&K-bMp@R>--k;IG(s(itRcW z&DZK2j?tGJeqYdh56X~H-YY&))Occ}BT(s{H_TzI?pr|7tw5D4EotB?u~4XTI7ly) z@21fx**^24R_MHpTY#31Zr18xPLiJxfjpJ9F4IL@|B$+^T8`|Cfro0TO^Ygp2{yxB z+{gGi12Yj@lqBTQR;Fn5#jO`6?o$v{lZEtomHnn`c0rh}sj82wP9?;?ty=IN?}i#j z5M2+&{^|`qYhZp47ot?~zMsfwX%@ukFV;IG5GC`OW<8V5%G1b6tkpcxC_AO}m_5pY zAlor3PWJL}_g*UmRcde%%CHk>a%v6Zww}F$J8Z+L0p0JHF`*UQCF55Rk9G zI!vMs`9>Z+Mh`(p3yeFXS7L~eA!{iX$U8ac9vgoSmhPu{qXheFIDre~`zDuu?XKvn z0nvD&IVtXmQ%+w!)*~vN`?B+UX=g~RduI4hP%^WN}EJ1R14I>NLbG1df*(0 z>$wg@Gehy!qCTT{_~RQCc2)F!{q1Bz)DH zPrYGuo<&S{HANK3kX}|WVJ!(yw4rxX)1HlOJN2Bdd9!<+TnNfJBb++=IVrzcZCRBe z*H(MrRX#B#m+QLVfITjFyo;ncUi8;nsxw>&B$(v`1dcYTQ^P9U1g) zy9yg=f=>G%wmGJNjczSn;etc)jf;(LDJ2W>Tv3H0@P50OXlYF68=wcgxDxV2$@P-j z*RAVtaF|fihzW#r_`@R z2xcgqb)t&iOTu+;dLxD7C}%l5k(-V%YOlBfbdTxdXLPV*jbpJ}PMYcKm8u2nxwYZh zyiS^T#g-&oLp0T=ma0}cIA#!>I2^3?AJcAqLv1o86;<6yIGDeIW zI0|BwkyE+D`f~8r{B;|@*T|jDs?%2V#X4hd&)ER{UDr_re(39q$}uxD*Vcc7MI1~Y z*OpucSSb4(vZ5nECuOWr9(wlk4*GHcs;WzU+@;h?(%hQlujiA$Y zaLFn2sW+FQFWTDDIT^K^UXj`;6+foT%EV-syaT{GHBT4qfpFt4(G&X zBc>TvQVGmoxuL-n#iduqY?`me#NYB#egD*ZTDl!iynV~$NiLO+!3199G2+Hd= z|I}MF{BFd2DH^tXuBF%&m?N~`*V7-7%{&ok`4SRLFd<=0CaX7_8z9SfVkX&6Ec?D% zL10_K9ewA#4DN`>q zVJ*qP0zEp=r0=xYm`8!pX}@RDcMYGcA*~>KMdZzQZNziD7PakyPjYnc zqigjv(rPG^hPkiweS#vkHp}LbbDJ=H)|In%<0hS(Xi_X2+9LhRd|R=>IxlD#?+Q}W zai&C^Vv@a09XcN(xRGF)N_hJXf-YAYM17Qb%1~|{2!WM61t8sdCeY`xU5wA)J7=*26G&)SM z(wZZI*f@rJ##%brMn@WlqD{IroyPe$j`z!rk zwRGMSxV|UnYtFJucHrwu`0weBzlBi8Sr*AOz&@Pn1j2F!{r${e(e=k6(T>6tXJvb+ z9W*Dd?=o#G1I6x7LnvP-A&)KN<}%RCB@e=&N`Mk^g`s=b*yB|TG9lKXw~=Y(k@}}Y zi>gLM!y&m^1=>aYsu^!>QnK&9+FDE8KouHP3v|zC&FYYjQfXvPI%BI?Q zFm*pegEt_f2p((T@HA*hG}eY+T~G}-hp2JLzTX?JN)22*Sny~lpIaa{NwICIJ{`YD z#!{&Q^YJp>&|$tKNiz8qQA%6sm8owt?+cyT+lG-D{Z_+kquEN-9=8ey4d0^>G8w&3 zKjBiwqn24>3>HV-m=n(e8mC!@NU>jMH~OARPg^SOHw+{>HjeW(M@BC742fk%=u+UU zqlRZ9)a$S69ky~O!RZmL5xo$=UCfpc{oD#eM48M^^@rbWr`jUaz2{!DZfsW1T*NtB zRe{;qPgJ?BKg-71?nPYl^hcZHxw#xvDY?VYUjjT7(K*7&n$;lMXD6dgJ%ev3$AxBt(J5LDWcl<|^?BCV0=-dLh#Lou*-L!G zq}OZ+6~8JCR<8t+Dg}{ougZ{CezU;}U-|lT&yyh$ml`(EXuR5d>GhJI!5IbtUJ-&$ z;T-rE1{tHt3H)SX3emNR`JL9T0|L;r-lRKI2E`*}4V0@e!A^r^w4ytj{%jUM+ssP! z8aLavnnE`*cm1WofmQn`yV=}Wr4ZwMNkzV_*Ky|gBdwz*FtGvlgqfiWV4gju)6i$j zBNf&f)wu{cenzYJa)pN9O^o6x&hiVEL0B2Hvh{FUdFpG@?eq=5%}|MCAYP3cxfa3(naXP+|9O#0+{ZKXg$mOkhFu|qucz&4o-4|R%kt&9 z9e{n}QMflv5dK}~yts8A+X0TMPM0SJ9W0%)PS3p9C8XIKd`$bx?NG?d&Bhab5O!Pp z_{rUMLq+^JvrpqPa~%xeph=OCHQ{`O0EJKVgMrfksuLs0xSl-i_h)p6^D%4*>!Wqa zRLKvGw1$PV91N({4=83E3|~eO^#zT{H!_C9NNtv z=#7Yyeo-q#r-;vozhZj;zTOhjC@}eD8xFQmn%LPKtFv!dr6)LtM3eoDU4H+XBfcc` zt@?2{n%L7tKR+pNX;L$o`&V@H`;0Ofz=wIS)ynGR_sj6hzErQz(|Y6j$o>95n6!Ym zml>S8;`51e(o;k{Lc2V2177iQ68`%>3gA9aY0=c#f-n6-3_-fV3USRm+flOny5Ski!){3LM%WN|sZ-dkhpi zdlUI>zXR{EReRdP@u(I*)TqwAl9=mb^AJ__(|PGrBpgN$SLYRn2s=#z;uyIk*!0>^ zr!$sw6R>F^w{wJ@X!xwc`K<@Ox}s;Ew$euI#V*9z<)b5A7Y+Xq@e)-80GgfkhxwU9 zP&;8M^QmIq8*mu9ZvA3zbCyPqas#>q|)=t+ddD$Kz zH_Cgld)IsS@k24taWlnZdZ+l}ncrfJPVHqyt&tVPdWBT^lWxX<@=(OddNDqo%oMwb z`^HL9gM19T12xIgd*}6&;eqSX9wpv$$%b%jAzZh^3_c2R)HkaY@UMj6 z;qK~FPzyS2)Y8(6xOYu?Sf+YCF*oY_!IvJj1!pO6%-7I>bMRY`p(ioVn#S&z`{dc1DrThTYP9B1)O3)ZS+x3H8wSJV7xKJMfYo>= zz(V?$Utv(ftoTqW{tjH_et6t5EnityZ4vuN;Wb5(a7g7ixE&-qo7fevQlm>O~_NiJ#SI@s!ko09_2W>P8=?ToMN zxd)MyLL5%f4_(#0iW&~}sWibP6A z8w8+Pln)**%WwxR(i??-<~lv!3Rtj-tT^Mfi#vT%q~ohOX%5RN9;rx>#c)2zWs{%t zy0xuMyFy1IPsG5gl4@sAW!GK~1+2U4)LFO z&zu@}$u{ceVJX7S_qWe92t$qP*AJ=&CB#qEWQ+`A_66Uo1tM2pQah9kDvNYmuwC=p zC~Z9}*z?iB+87SdUV$T1y|?+u!dsl$hbKHOfd`iNkKKcTUaqPQmJ}S`YYE)ecH6xKO_UMD7*7@hD@j z;FDESn&JB&M!1aXuw93d?W}1V&+L&x>Du)Sr1m-IT4vDWCNJ0H)tI)ebhBOCj9ohjly`%x$<{r~jcLb40vy?pUMj z08V;{0!DA*JgMj-n^opDokFf*W>+zIy{cuT?Q(&c2rw z1Hyi7_!GiR``MK=59Lok?)HkB;a{Y2dIs!Q<$7_`v>RIETc%vpq*P_vDBwjO$_z4i zo)$b@w1k}MnWJUsefd-h=2c)P8nzQvg=i;SKklt&we!T*{x?_}=<^W|kaDD3P=6gL z*yDDG8{??qfSCsE*>njuXwV&GMyL9i1#DKxqJw;tQ;3zdwekY{%3v5i(IHpu3gap8 zCA8OsPKwbDi0N_&a#bb5^j0pNkW;!=k>U8_!x=~f2^y`SCao26k;ct0=8FRAQ;zuY z0vTdHsG4iq^6{EU>qmf5H-|J-+=4XXboKHNOqjkvT^_M>8++&#(?G*CnQnVSuqlS_ zuWq*fb3h0%1A^-pbdlD%kj%zy_eoxC3RQq!(;x2OB7S(MG-p z!`Ti+@@rflP8p5m1)R=6f?@-czUcY^J18)ziM4dAK`nB_u9u4oXWTg`_O%@?vTr(S z;bw$euC)?3aBLV=PnT*2J21*k84phxxTF*rRC7fbjp6-mjY4n+1e}KIy`f_lpt*5r z(ssjbh4RL>uMCdRu=-}1b1^p|ValkhDW33a(9@&3?<~SX%4Go=)AmCQ9P&_ll~0AW z>^Gx`$b>SZV2_K(!HQwg<}8EeCHEZB#)RBAbP?hiOVfiiKK*%W8PWo-E2?pY0U~_{9LsIdIDf*-TU+2ka&lX7He4BnvXxz^gE;MHLu)|h)+kPE zv-s+Lk`Mb3^d96`x%C~w8qkro`s|N(r)`ILG`VdGHRauAg*>(l2hs1NvdjBt0tWVa zA!#`+B2WWP%4~p<5bLAdyh72t!$bvY;rynYfA@ev1c!hItk(VH%TBXktGnSm8 zJJ_x1WeagS@h1p+nSk9uEbCzPh#C?sqyQC8kx zYq;x}h*LO9&OpYh%qP}G84cz#I<}dosTPwQPqB2Jy(WhBw$>s)sbrdEKT^7K_$*xh zI7Mpxu9(wXIt$&wX3^t?s22`9vAF-}++AFdILkL!^hHcjW@H4pkf>&4dK~e!*FZw9 z-~Gm}nfu5_%X|A1KC)oaL+N=DzH^rAR(^gulc3;e%pf{U`gmh7C#;kG*7i0$XZ6PZ zbi#DN2aw@2$jZCM$08+}cPGG1_?XhwsDB-4q_tNbLMe1IvmQKJs~um|lRzV6gOaVR zXSeoeAZg2FGa9njhsCWCDgPan-9lm@55IZSlEF}JE_CJ&;G(ube)}NaYok60O47*V zywJ8XWwgCO^8MXbB1pn_l`D3lbyIXRP5g-@9HOjlfoerxdQBp6Kn|G9#X+dCn0cQeb}zLFB6eER=yEs?t|^&(8O3#Yg2Pu3`G{yolV5uztCC1}f??md8Q0Us$;%B9=-se-v z!gdrZvAx&{bPV2gbt+1f@7P45=afcgwNFrNinH;`s73|Z6qN>-&*7EZ!yb%t9$6ouIIFA9a7VoCbb?}|>*$d$`X`HOQ zkbfY}Y1OGRi{QP%(@^0?!LSTL=UntP$Z@+$atuVJ zRRdvCIoAj}htevlD}fv-v!X?Dl^)#~Z|;W-2kUo%G$_cuElZomAc5)qBFm6FM@}x3 zUyxJl!)~oV-EMjtV*}MQDg7IRihG5xi2RLNl)rW@GEOm z{7zPP+&!is!&Et3F8yp9AUV2&59?nXETc=N_ueRNzIv;nDfem`6~7J6CRMwJY977^ zx|vgdmBfK;yu_ay-gsK1lq!0!S9^6XEk~8`HZ!%*8ac+tPLa}}23P$KvKRWo7>F2S z0Gb&t`>>Udk_P<&+{ zJB$p?L!?rK|8uUT7_tH~2>3=PNl|yhgJJT7V*c>Snn9(gk|*7XK3TQyn>NriMWcoK zAot4Iyo2tfFzyvBKv)vVQe0!Re&(q}PS1TTqc!Ypj2kl!qcN(}H>@9#EF26h2h@1x zmd(SEI4VI0J4!>RfIM8qDFdV&9(zzNkBw&E3LkXeszA5Y)YW~`qPsmOf;U4$_(&!$ zFMaXB`Bo4O)t!6!9^83nn0FGWQZ&{R_1giua>P}$NoiP&H86CSM1%?0OxM?}HfZBU z2vz~uS_QF5mivGo=zG67YN5q+4v=pU57?KJiP45^ zF9x|kfC~#dfhl~qxj&;%^UA^cs7F)~$BKqW`)6j{ROre`VBMh(VpLH+kyvF>XH=%4 zc*X5hVS#EtR2L|l7)hsX^3+N+BJmQo(q6gr36$v&C;NR=P06!;`WQZyKL5ll)ekEo z<-$K7#-eH(VD_XG$QSWIjh!=s|id{6cXC+$8x!xeB@>S}f~ z|4ZzbrIrqMk5tgb@wMRsrcfXvQ(5`ZNlX)53tM>p@N5923~c+-1BQ!?CNy7Sh%X@4 zlA5Tr)wvv|TUJ-;F!dc+r-csKf6@1q;j+z*--2EK@y5E^?!a;KV=0Crx!eNUnQ%Lr zfQIR|kK`{}G~o8-Tm8*XLH7lKy5{~MG{8&^!M#t2h6Mp_+jk6?3q*U)T{p-jxb!R9 zp7f^DmU9{LQVG~uiFqGZEOjTfl7rYel10JrIE?1rm2z=f-dnJbmHseen41xh;}v%@ zJ9XK9x$-+yiuMB%N+CDHY6l}~Kp<)5sk4-|d85b`C4&1<5}dqz77ZbldCfgbub@18&G!Dq z-{Wc?1_Y-PMz&aQ0Yt9j=g=vtVAII{YUc*zf)m3!CY!qlMe}d3-!-iwR zs~1T6+*C>=*N6s-Z$b<)IlnvOi!e$O^>XeKcx<7HDp^3o>yPkH$%OFg!h?U)TjMt* zX0NICCJKMGRhk58kw=0($|=I*KpVJpXk2BNpp+uaKP&sgd==S+@d{C`#6Fekh50cY zI_{%_k3TX^zU(QV&dDL4I>3p<#nP8qVU2I%SQIYvvhyVffqXwp|1(jd7@4ntk|H z7Evw8v`|xvK`VU0fIJjZw{a(gZWpU%yu{GJhsVolGD`zpnavTqIZMWb!t4l@@Hf{3 z%u0xBemk6SS|AdBn7a(Ph5qjq*7Jvo)rj+2x#{?5j1d8Zn_zUg#T#I{gJ(glt$(l#%E$31Z=z^y7>`0gKQvVSzcO7)ZdK0%57{nn4{903)&Jl zN&5{+W~VfJZR0-IpNS3v6MbV1n4+GMa!VBsjqJBc=xvZ%FRh-27F?3Km7o+zclKMZ zLFAt1vnw}I@8u$m8yekYzD1kz;*@nP@ju#yvwjay2SxR}@`5cbrDm;mKnGX_Xe=BA z*Le3cx-%_orE(`gD9b+P%`0GE4AV5|XmUd1kp0K>#Y>3U?hn}()qLxS2;EtnF1X*I{Ig}H{F_Vtp$_9^S=MVLl_P9` z_-}jC6|dH8{G$l)^HozI^eMXJSikc!Pr+W5>h6=b7)}^SR2@N}b>Ta6v}gxCk@rI8 zk<6`KpBqkHUq1a&dYdPJK@+F&>tM?nQxcq7$e!wZa@@@p-~0H!-XiXcBmw)fo%z<* z=yxDd2T}`n;+pKnd6R_QY`{KvqKdk6(EUHy7mkv(nI@Py^8iROk7IO)mh1bSjlbDN z_x%+$@3WoO%|KG|HjOsGH|haO(J-}0VKh$p^=^;>^-=2yP%! z?F-lLH0xJbU9P@GM8(hF`n}S2-hph1sDnPc@jA*22{Mn+lIMTg%7STYqk`0|Zjs?V zph!*v(qOjT)NC%DbMuFr6ZTt^HB}B%wL;iGEHzM0>saV|6i%p@nC|bGF<|2g@H}eg zIzc9a@w4~gMroWel&y>g-U&2og&>IGnq}(%o;XSA7zq3BB2|pk1sx{ipT;R4e<>`p z+jsn4k>|EC#)EAF_-5PT{1^k{l1Bkao&05y+<#D_1REuI2G4i(05b;%2Uqv5GD;!o zVp&)83Q|`ZI6$H+ZNDTmI1bXY*V^vi{Ntre1FjI#;FHqX@!O8PeLPv`Q5-@o$aNDU z%ruV72y5j9=c$HE00*%N(zT?MihDIcNeywLP5A4{*5p7~Uds3RsnVa1ei4OLz%4vc zP;yE6_s5rU321@|S{?rV>HnVmcQVi)q?7*d4W0ReSs~z<0n{^AOxc*K8wK)wYM>ML7!CXp|VT017 zksOt@<}bH(OPZhbBwzm+`d46(&PQafIqQijZUE_&Ou9q(j0q#DBSF+IdoAu;j zIfD!&s4}n=v74Ioc);AZ`mwvdIuyc zwZV)|7pfiZiTv3@^}yuP?6GU*kM+HiDg@!F199cRYD&j^7-X9Kt(P2J81UoW28so} z0E3KyOa{fCpVdvA(1b0O<1a`J*%y!ivyW~aiPm z-w|M9)?({iS51M?zM6=F{o}|t89J}80uGbcmH`Sm?aaM`skWe4_)4Zyp-4b;cPec+ z$YsXcQVBdDBd7BZWo@1T+MBFT&tv+0I8USXB8|`^Qn7ti=Ivbpo!PNM1Hoz`$7#_d ze%sh;c24nz-GV!Sl?Vl($;JH(iQq?v>V!)|(8XR?SOK~PK6M(*@f%uxB{daP<``Nz+oT=LImWleJ%Ir0HH)r+V zZbFs}47vZCZHQ+Pz+G;87sk3OoX~S_H2brL8PX&o>mSND0MrfZV#(Y30KV{-dty-wSyb7@lXXUD9uLmN zo41twSv=+yU@{~QaK${qJoEtvu~ao8an}Yg&KH_FUVgwVy%r}j=BKYTkI95?sJwLJ%apvv&Ae+<4Lf3YRe8>283TztK~3Omn$I>(W|cK__GfMG0qcE! z?as<4jU?-MbRa&d^kI5|&GYxVP3D-3Mke0%;VWP+dROp__BVl$PEH7>O!G-Se(#DB zAx*}^H?c15ee<&vZvwiwZ8$Si_zzAkZf>1jBDkdEP7D=@MrjTU}WSYpp49D}B zeYpREsLBrsO%i%)IxDamoxnEu6!U0OM3D;SxgQVy>qatG{b)USlN#dZ)1^&9#aHt9 z%gdTG5DbkEoBk@?QlZ{t_R- zI(d2q*8fjXW8gj8e9oZ4Dq=lSzsA{Oz3*KhkoVmz+X8z1N)U~=+*21C2dbYcOgjHw z4V@1#*$zM>;W9dJ0)!y)6OF!g5RM@@#*9cc_}>2Sn!dL~4-}G>R{e}ySBY-@1$0K< z{Eok_h&SkKjegLJ+CF3{eSGt@GiW#NtI-uSP0J?OAv1~mzrD2T2^fdHym_#j^{O4F zJ^)FBc9wihTP)GFVPQd#!~ls0BW6fSWAw{ro+zXnw<^jB&G=>_t(j-?WMSj?T`m<# z0CY|?c2;Qm8wKS(z*!$Iuslht&2#{<`-7f#ITS}Ym{$znh_NYh9?Tdw#w*2%_rcX=f><=@ulR~nju8Q7rk*?XM7 z-O8`dg|mS*lc28gZ*kcr0y(frm_3#MgsQ(DVEzUelk6e##eWxL-oL`&bb&B+@Gmar z=h^@NH~Ak(=j|#+X9B86d5+C71KUni;W#r5yb*`egrf? zf@KXVN8jwsfGWJjrKN8RQ31gEGIRVPxzlK~s1GC6MGPrEGKu2cn zF&c$r+1(zgb+fe{%8kJATNmlY?L<7bDgYcA3#Aodw2)ioejL{XK*C76iV#B-G>47)Xh-168FPzpW+jd+-TR{HEe=%{ab>tMnSz${FD2YTRf zAi=W*Cd#do$P|b#94Oc|oeD$3M0a0-YG9t8h|ld8>&`H&LZ#jKfKfem!~eja@mGq1 zGQ_~5QyWn>+%=CWw>Yh0<0&sRs6ed-)7LT~%DMaHP~~dCZY$B1|0di8I;qDXb}T)Q ze{oETRE&I2JQceYM2xH1}FI7O1(<=4#(f?q?o*Vg*FbsgQQ;*{v?1n!@aMdBxZpl1m(hPCgkFWEZzp|Y|0?F6p zKF1nwau1sw+T8vYtc2k|$fR=z9}s&#!P-}1p9=Lto4-Mt6X@<|uBL3|9epxDZRJus z<|wCZly!2sNB{+1IjCjBGsRSRxr0EU#w`&g5g3{2O*8?~qwk=<4SM%q*dhtBQ~G3n z=N#$n3-UHGLkx^WZwL6D6i0V4=~;JBw<9t_Y2wqr)SE^xHJPu)G3uP>apNF0ueScl z{W%n2b?i@I=+NNo{@XMYU~1NzAuFHCL6qV?qGvh2oCc#yP~eTiZgpjMd7*0g=YIh- zN#_s0swApy`Um^Q!_VWn{YWq-NE)+~3#n;j;3@e9Yk*4L1X#5iEI5uQO(l0f!af%U zVDQ~bgW_b`-yG3r3ShLiNuk>`K*9oI^Dg_%?i=xPAaxys{$1KD)aeNivT3O5lhzUqh6Q>EZtxb_HB>pq@XCY4c?AEO432A*+58A$r7l{sSp zMPJc?Je=qcBCt<5W#xl<%>9pDs0WG&r9DCRF|XZrR-;Q%a-5;7s(wm&{eNh^upLar z%!Z9V5T%_0QOfF)m#EKCiFIlhC^QyQQ3A9`XCoR3ud4?mF$UtQR7>Cg!`_=mQ{DFA z;w37iflx9vC_{*lnUZ;)XP$`IGLtAaGE_2T$Q&}yG7o8^Jjy)FJd`=}JnrA;E9!mT z^Pb;X=Z~}2S!ccfv|7^M-+k|UxIWkCx~@BnuutgTRAgc;f-#&%|6mL_16|S0&yu;? zIPiejc=hu&jM}%+Cg491|Fo?2I|nk(J5yDjgqPp!vO0w>N0?<oCoqKuX zSN)`BXML$|cQyl7C7bLE;$Vxi87^>nmrUx4+gHnidanfSj!OTrh)g;S8~ZQe`*@jl z2VldIsk^##(0H{d8uPt1aKk?Jgp}dmudGShvh^_oSLLG4f=9j^f&+HEkMBI;UBC8Bc*AhzIHjTNmxK1pPf)VIQtpCDmfQhed;4eY z6--Do;w|&m%Jc&u0Bjv8I&1;uId*!NpMJDKsj`SeGy1elPcF1%OE3|=@| zQv&+~0zhZ24$S$oKbq+ZWxwry)uSKvC%y6?x+5__rFX`QpDJ1fTXL39Vrc@3_c>J8 zcgHTa^AgqP!V$(TPH>Iy=i(_ihaxykM_BZZ5R`+##QI`;^>T>1-q$?6xx1(UN;*qk zKR8jsk5=={TEg(}0=Y zJk`8Zbsf`X5OUmo%$kxDrBa`?tJWVDg8jMvGW@6fGyrsn;YJPB>B!#~;t`*~Q` zGrIk~=?e=0#-~%-x>v!FF;;q44e2l?;`|M*s9wM`=KZDiuea^Ch>bUVE?WhUBN}eR zo}URa-ba1bH9Q6dvs2|_<=C*S+wlYxNtkC+i!`+{FkDUC94GVX{o=w~? z9YoN(TPoBr2|mjJm-=)PUWXj?^H2>cZG`{a{?i>-gU`(ml8^;Bv1M_T1lo8sA_KWuBAC^%Q$UJaNb_q%C-3Jw1GzCkx^aF?z_bhP!~=UJwq#mll5v#zHs=VdL7vv{Yxy<^;RwsiJ z{|3YasTN^DZL5}0q4;dL@99#*tV^q_94c-LEWCueNr64Lk5nwr4Gu!J=Pu`~-%ti#b%@VbY zkjRnJRJpJl7m@b5;_i=rIO(0pZ&>u?GuY(3JL>18t`@(@m};cO+&&q_vEthmkurU1 z%Bw$B`C1vEgFYi9FeXVZI)W=SIBg36qIp`F`>$=)Rrok;!iOhzk2QffqS)f);m8s- z$?~$KW7B&bc7+B~=4^Vm_|lu{+Ig+}F-}Z9U)vtC;&mp+xRf$=_^^I7SsHJWk0ef- zg2DX{FAn4?Mf(pVGe-ABdC8TIXijAu@md;%7SDP{aACUHahQ9H4R-`HLxN38CIGr< zRa@LCDy?$X@Wy99aL80(u;8TjE%E=wDz^1@E zol`gi?*}DiKC~W6GC37qYAv!eK=1i5sqUAIs-u3l1|G))v-o#3U1{ACKp9gizDIV` z2!_O`C)7+(;9ApHFD)Nr3Q*bEA?Eh7DYO1JUi`Sze0@WMy)uKz(mu<4lkxZK|^vPhQ zl{IOQj26gf9`M8o2)X?E88!c2Q@_u}Ny7yS26JfF00>dqb$!WlU+tY+d{SQVbXJ+n zvwC_wS@qX1+ziJXqca~gy+u53T`Q{x3W0!^se}BgXbi4jYBpcvL3?cyDTNen!HD(9 zeA=ere|#fX{Hncb;`VD4(_-k|BjVVdrG*-rUZ7tnZ5w3>DQ#_RWQ?pbTQ->#*_VHzlnh-ynPQ z2JED5Q(f6}W8J?M0(nMYq|bnom}L%JL4|O5j%w1Z;*7HHQb=%E$^59F-1UohIXAf{ zIJnn8SlV=xZtvymgL{$>AXNYXvbCmx%P(tXqUBSj0AzVhzf1nw3yPqJRJ?Z2>zk78 z*9M+s10H5YD4wM4uO()hsYc13cK&7{m-#gfuS>K{%|{EIjm5RBKft77PI%#KioMEHG^%DxI6!D5yLFJ z@cX;z{y_)ZbOdbEW6BpJoMM5v>I5d_%M-mGox|~3p#Xa#J4uR^cb_sAxvJv&VY^hz z4qYwc)jd)(@)5pbl9CI*T^ds92b4SSZ_0ft2}*z@Y^wAWxR<1VL{&Qy*Xl<_P%^dQ zzO=y}FzzMo(9zI>MsMHZ9&CT}pJ6*2AS~WUBiPSrP2COzo*P3d~T8Mp7? zQ@tFNxHWAsH&70R12>v%5HPcw!5I_q0_nPJjJnmd4oSeidg|X`*(Iy%zVkXH|E0wb z<(CXD;0KEP$Ru=5u0clON-MkP|!voenIf8^9f-=)X5mAMMzo7`( z3ZV{p2s|XxZ`=YS9kHNT*afl<{VwN5p7Fac^)j_M+ur}X$n-z5?)@UR%aWwR5cu;M zgr(-tS$LrrO;!gjN0h`dEY!~3r0P2NrXEcu#*6#+1Y8vPP+c6e8J7UO1Va5+Ka4lL zu2bBs_jI8;%ziRZv2T|>*qhkRu(X|h^Z=9xLYwE+W!?QC$BqomHuE?&ieIFAB=z6r z2@cV~@Q*PkHCzK7DPwCT2BPsEb*QRWf1rty7)t3Z1Ph;_Jh^qj{PX}TkXE>BnMDJ+ z5JSY68^xlpG%P<9#!?{7vwvFCo0tlq~%JaNt<}l)_NpJ*|yo-K3^5Tue z&|@(DX+fKyUl0+gfp@fQOJBE;RM=D(AZ7pNF`B107K?`2TZdv))=9XNZdWVe9+0%M zP??|Hd4A?{2IwbX8tq8wo1SF5Iwi8^cbXxKTF2n=3THTuCy9xGN>1H9R%!^qrp%+#C7k!((a9R?2|^j z`L3-O1m{TC9U0(^?=?Hk=zD2%rAxnzMiD@@kgi>e=pzWWEXlBY(sT>qKX>_D=k`zc z0CNQAaL%IVbs(*DdW<|L{7GylE#)L7Ahp;CX>+~O0U@w5?aXn1gtwoy6n-YcfH+aI zBB$`LMGXxsAmh_EMOA}*h@{myulR#Dxf4WZ9Br3xe)hnZf)hzz%!P&rKYM6GX`Zpv zki^CjMqW|PNhj>tt5zxskL#F=iZ`UI6Uf91{zAR<0i{4&?Hgt@h~Cq^x8i5Wo4EJ- z%FN1S`_qNq6ejMWh1g?F`-0ZKP70H|%#Pt__b{fMqS~(~7mZ(g%v$mzkl$9=={|*> z*pWMkSE^1bvT5%XWl5D!A51`G*bfOzRNe#&T01H^|M7ysErHutL5V69`%XDHBx_Cn z-VyPJ?i5Gb4o*&9Kqp`H9uMQK9g$it%?VXT)F_V{Y+MdrP8nWK7@7`CVDjW>@LdB{ zb9a!uplReS%f=M4y+VSaR;p_&`G#A(m@L9lA{K8s$+-o{&}ul+4XXJrQEkXO8R0hX z$v-PeHj{&N1g>j2=a3&1rifMedJZC59D%3^foafsmuS&r(Kk?+y3-R}*(eW?X_ zjU#i|_j)n^W38C7uaC880EP0sCjKRv3N>S>FW-YC>KkNCn2&sZ;nwT%T5{u)0(Oq4 ztwX3~uhK>mWF2nbG_KD9oVK$z@^sMa#Cd~j(RP86(+glJv&jtl*b(O}i-<@}RBK-x zC|-zwo%^ohPJR}Jvw}!xA0|3fKreM{api5-o`MAb=CeibRO}!PY3t;!B!?A0hwTerqR&-54Gdqj6xG1|T ziOAm~R9JqKOA0XHOZO1n$`c8{q8B()vJG*E@3yij!iS}k!Gdxn>}ZZ8N2;nbbe3N? zbl|O&PG{M+S>9zo@{xY%DWw0ljqQk`&-nDlRJ3H*Iqa{hFI+I=pQ1kKl-MM>-GLmT zA7hzIT&fi*o#zYk!5`XKCs!t4OJfn@F$r!h`V#nPn%R2geTTS#7P8V+55XckBTI(m z$Bm?h7$JR4)9^ig3v+t-ode8{j}Icp6xW79#$2dJ`IqVvTV-s!Cecn^(sOo3TJN@p zJ2jHFn5^25r$yALtYKeY7O%o%{?Y9-G6?>HX}};qWS|-<08Ma-QG+>nFzf%c`T0#kSCQ0E(`|7CuwJuc#)7CWmUe=$W3WQz%?=SDqygh*Se{wYbl`?0sN9rqx zJ`a1!4oJ=IK3-3er6qX32>9zE=LONKyG?(9%&RrOPrn-u0Vk2(%5Q&H!GXVPpLM4N z#{_KkB#*V`#H21cD3 z$lmqq7CZa{X}Jzs*4J{MXA~Ly=-l4}4cCcJ5K6YZu&27;gUV9KqVanKRQ$tzk5`eW z7SFQWD9}unPGKv71NK0{M-+u|#XvofRw3kw{i74Mg^vV{JoDz*+euFI|1)MB!}|58 z3&bAkcWWHTD32#-A#ZC1vmp~WdW#uo-v0z1u>d63rK8{^*MQziCWtAs3Km|AQ@@AS z!{3PDFj$DvVJ>6+39;zbGS+wUxL#2!i9CM`m;@}#SJceFvck6kK_2&kqH~9!>1sx` z3=_~qd_+RX5!{7xdSI z;?^*Ax(yw?A$F%4; z*S)A^+Bkv5z0Dcg!#^9-zJ8U0`>M?&yd;F=?p+2yWInV}$&0o3UXWZvm}|e#JdCSE z50Jt2!t#**|DbmcC*B9qWNY%MzkJ}RllV%(rim^?oc4h1dIYzA=HU=V|C$(T z05AUc0N64;2qX7CERueduZ88wc>ThD$#e*(`Z|2-LlkqBLQZW!S~H;Yg;8%x&`RI6 z+A9>}ll5#HIMqHrbyUv*`CoU2W*&j=m%Vw(YUkE{c>f$fO)rLg)OvuKz5Nb@Go2q6 z{=SgJVt(7SK8y{qgF^mkITA)~5~Q$5kEZ|mI%tF@j=qx>T2v6;WE$ZlQjQl42=6|i zYyy8qK7D&5yK-(!XULbA+ITk74Az*U_v4eE%8-oFyuo8&uOn3J| zRSkV-WGfv4vcOEhY1zsQX6R69ajG;5mI-n?PMyM%PV_m&_1 zZ3M;U9Q!5CdS2#vkV9JB>rvtkb%>=Gx@BiyXDGRTXo?icOZc*its8I@ZsPoD{dAf3 z_?auHcb>_3_$?wQUte}2dP`!xEH}SgBl5T)Xh+jZMA80!c@%Dh z6t@_IH2NG*Q%b?*T-_O%0#C(?c7r$Jtv~6TdMU$V5LH>R3tz*v| z=kT<8h^vrr`1kAX4VbVRJ}qUQ*5Z!~|Mv56+|zzW?j!66QP^VEdTB2 zM#RG0Z}4B%{r;f8-uQmVp(?g?I{A;k$M@IIgC*fxx=PRTZ2$RweRs40syN4MGT!iS zc>VL|3Re$%7>36dpZK?j{O`jb!ud7wj5BpTh3006VweE7W6!qB{zo2__19B>3Hz2&S9*Dg9vbm3DkXROk(+(}I zTfm(%TREHrRQ3i*obK(fVhB^tlMO+x6?fGXsEA7e+Ak$P)+grZt!FF~|6@jrE9vMA-A|wx1%Y@yidy(=0^wlbI9%qM3(nfAl?I*nJzkW|Nb+s3z!W9MyweJaboD#wkq^~OMC-l!WB@(h|{ z;gB&O1|Yfr12hhe0j(Q7a0VQCOPtc$qs6Mufb1G&&}aSYjc;s(eguffK;PMSY7nj= zN_$xtzN9bfC5s5ewyvHCOF}LbL z`ATQq3)&UElrQ}oB4oB0mFhjqW-uN%q;Bp$v4aD4U z4AKC+av!jS=U3J0sr=9{SRlvGs*W=2u(IsjRzK2%FHYqB@kgMv&FzWNPavu`L++q5 zjx^_*76g&hO^CthnkHQfIx@1!b*)|aX zzP^>Fwxs_3fUWJc^ve2|-0PG+3omTfHu@pl20ZL+)_PhUjuf*Y_3+h?Qej4L$ z00dp;A!T`8hV)L%m?yA&rIoReHL26mmy25OV00l0ngKFX^YO5!uV2R}e$Xr}fwfCx zcXzu}!8n~ksDWW=+y-?o32x%4`FjWC7-V%sa7vWSj4BIccvs_#S36eWU;EZ_SgHvU zWyxi{#w4?HYZ;9pM7PNHDtKru$g5j-pk>h1y~XyUr3oX(lu_7&S``hhQao3Bj2dLK zTjv+&`c%f#hO@UGJtN}EspJRUQlW$DlE+G4tJM?ht^mi;i>QJWv`ZL84+a+Iw?!;` zrLVl!FrdcXrK3cSxV@2gD@EqyUT9_K8PpIWBC33~4L5=0iKusQKN3+DAy>Qn^sJvp z=r&64uP;|1*tFmJ&u}BuQcG zS%uptg|@BAoHBf_%_`f^0S{hZmO-{b?y!+wnC+=x`B<&wZf=_-AD2WSu#R-#PSc&9UzbBN!|NmZnta84K9S^5;@ zip+Lfxsh$ie$7jnXw?03_}7sRgPL;DO~uo&WFtk4n&)nYe9edw8$Fgg1`6$PrvVb2f#!%)mLqDFYtS>=R-1-x^ zVV;%@YUBRPwHT+Re45mZzU}m6*$wr%-d1T=^YN`(OyMfeQvFTB#h73WD zShRI{v2~U8P=%W@bQ@3NDYi2+Qi_njxq#W;+@?F(&h&jXI@l^SCE$5*KNN0bsmX71 zYi48SFcFKk!xMRGw)KHOu%K8h61g7o)+>w*q zv|T~uX_(b2T&&La#bNq|P7E5W!#V*^W64rHZ|YnDJi!WG zhyD(`xq*IO)8a{p`5B4fiZD#Pai3x!btB+o>M>~nO?J+#c-xi0&9(0~HKPRN4W3K4 zEW4fxG~5hgh>3gq651i-9??Fmo0=Bei^eJ;8`7wx3Gpb)MGL^d6Ku(Rs^JK>FI*#jG0E^^OX{Cp@W_Xcn@F{WU z1{2St1+zKnnW8Bf0pExRDLj$v{rV9O+qF#D#nL~M_3Bg9N97(QG;gWm$f>hBSKnt)I}@=YI#I$#>8B`5#c+>F2z&{4@b$rH>=r2adU@2g z_oh&b4hAl+Z9szf_c1vB7M~T>9HV|5OU0GJirm815>*$_k+$nu^*7OP44Qw|O^un7 zGe%0_0>xA!kE(@U^iY~&x}!#}!Y6IQdXv|Lx1vq}O@WNkh&z3ESK2s1B=a546rMx%NZ0vf@{*JRtumlL&}0z7};y zMAROH5ZwTVGD8)1Rz9VTeXC~0WZlwTGVAY?DL-AjIhCGyXRlh38_--r8z;tL0|OPOKrLRhH_D{7p<9UJGlQe2dX{dOL^*3ht~0r^TBBCjxKX=PBPo;q;IM-o@~7RdvKgcQp&8_ zbL5!)h&f*zVV=L(MtR3PSGS&#RImqQ4*2hVC8-&=8eh9SlN96AhI@8|9v);43~xfO z>@uBUaoG-8T-w>J3HdxnG23%lxi>_`pnwIV#o5R76%+YARc{gsgfiN#9tpk4K-ISI zYUVr45)x;;4XR{Wwet;9Wtifo20GP96>T@V)UE-U;``QbXLh9P!|eu|R}qC}Jj=}@ znYPbkkWX;DhTeLwG)HhtfIW^qiQm*hn~S|xhk|cKifN*}`B&Nte2*Sh3Oense4KCb z8b{H;VK;x1DVt{$N2)yfaoFoZgn41Nn0F5U_am49=qv@)u<$ap6 z6Uk~?yymsKRYfT5DLL_Jinw1FN*6=9V-wn5y4`x(ujji$d0X}3oR1;%4Wt6m*|i_? z2oh3h$IvnZJ}oA-wSNl8;i&#*vDwRV?!ZB%vBhk&d?!;oRV}o20w{`G`=B4}SV=eP z56Mkm$$!`Ee@$Jb+>xCS=_Ohp?=VsOUJ|w;J?E_!`)YHki1#>iNA~p2MTfY!G`OZS zr)q6&5M9K?g|e3z%-8iO>ZE;@;BQZb9 za6Vn1#X7vzaktg&wxp%p=FXF=ch6%Phv&wH^5qj_ut?GJk$)j*$V2%uf%r;c8L4-& zOt?YOg@v{(!=k3t!s%w}SEb@l+sZF5Tqn$|pIXdbYH_9=Eo>6pI@jiK{?87}tEK~9B~7ir=%$OQ?y5+Wkq`TbQM_$04Zh1$oK zr>uib=_9<@LCI5K!nGsHbM}oFMpPZue)We1D-SyT$jW1st)uyXfc41T-t{TSLXnf8 zZw;_g5kVxtT(VM;Y6=}W(uw*@R3R=!{)Q^+UzC-wJ>$)pf0>djj0+`-YwM(tGx1u= zd~)uvy^xD?q73>wJO8Dd%#v_{k$bKFrzfg{6sQzYH9NV;8Z(KwJgwjuLg^T-D__lb z;#93WM1HCfbU4oVkdtyrE)9aGtPRX{c$P~ko7wznGWM1xDQPmF1iVk2SIP-_Mk41+ zPicRO60U0%(@y(>To=k@{4*4bU3#KYkel{7ZdQBcj>BYY^=w;ei0X=gn24r5c5`fz z^;Z9q)4c@tK$;bfGb~58Ch;u&Djp|DeYsl^_EsbEfgUY5n^bFSRzhT}Q{+>e$ zr;t@4l~G9898hYIH1Hhq_~J8)#v{}dk2_^N!RbbMU6}?2g9h}lGXun&cG&20PTYbfRpG~?KI@cQt~H`lQ|AnuLOP79?y_Z!%lFyPojeeAKy+dI(|XTJM}40T-YEq`|(RA^#Ly|rx2 zjL;dU$?HL-YqBNlof>>cB*FZ#t;kY8{_QcW7H4P2R>}ZR(cv;RuVB{~5nK%FQB#MN zw?8(7v3*L?-6}H;S_`0C5CRSC%-!Ec$W8&VA0qT^b?ESAmi@3YRP zKStE&O1&0Qg1M`P_DOHWRt(aLFu|&IFkFh0>G``Gj;%V~ki_%;t;Vx(s@GO};In{2W_AG}^X6aeJ9fqP5hOCIGSdF5nY69x#tl^|v zJH$S59alsgrKW_=8t0XiEUK4Yla06!W1^-;hEjAf5>*-Zxe`UEwK8&N1=ClmJbu4G zV;-p#sNSU=x1S59h{!UFvRd}c^IDU-Yx+2Qj8eTShjYG*@VY=5$91Ydgd?+TY_*4> z^n+LHw1?cr=uQ*+HAG%eI{BMOj)*x_^?su+fKoWNAT&*7ZCQ7|M*mX>dfx|Rr5okT>rY0q<9c}{2?{sFjul)ge!nC^ZD|Q`qOKu16v(IU_0_iFfD)jz$A^qziO&-I`c(Gn0KK}cm_a5TEFAs?0|G?ld z3&+BykpzjQ#!&Whf>`nvC|+M9pz@LyPg+D z_eP`YdVcdA<4(<@u18*n4v`B;-o35zph3E&*!sJapuC!<5h*AVmo$Xn1n_o*1OmA9 z5D!+OaNcQQZZ2ub*K)^&V^KKbRQAD>u-F>0;J&Db!_a1M+8Lf>rIBX1=p;_0d0}`r zkX}BA)w6>w5Ihy z&r0j+E!mpZ=r5f(^H=(n)7Q3<^vosToXH!WC}Bm9$Sr&Z8QMN$*PG zY&Dc)@Q;3F`7GmYei)YUOU-Jc!XmOO)f4%DGh5hn4%u3DsSw-hqvkSI>{lE0T*68Dh~BqDRcq3%oyzbH%#Io>Aw|&(BoaDvDcAz)hc~aNLK(>(5NmptoDb^ob-^I6N}c z7MPk)`DV9ICf@#}`*CxMiBBj`^J#zer7Cgw#CGi3)BIr{B?Z zFk9W6tCb%ST@hb;G9GCu_ym($qnl1Jz02^xjb5MINSFIfBpP3w+3P0I&r9py{d-5a zq4}q+!>zWpZL^ZxGoB4p%eZ=cADV@xVN=t5V=lip&hF+v^rLV=qOFH%?6Zc6U7MTwzV^2yp;^MuVqZw)?eqhnr6RXnljYjM>u z1$8ro%+ymj9M?~9(}bxVbjeSafX#_4=+sKDNXBhOlm*aO=y11%EYia0n0OM3h=NAm z>9ZMEQfv{yO9@bpb{cB3W{75p`pajt%fAPHc;T$& z?tE^F(2FFnvx-L(eoU|Y&?0srJlr@UbtsB*S;Pv0z`~FseCR3jh<1`4wb#Q-sUiG?<)a1B8><7{lLuU=HjNi#jmfAFy5eYsaD=?ZteVrE6k z9|xtnC6ntbK7pyXImn87-^Q0gl?Exw(rCRJWy7tXVQxtd*l_bE}YXcl@TyJMr9WOK|#Ld za=tp{;mX;OYV@`Sa+l`e8eFCco|X^S8`u_QT{^V2{H%0PsfqQ#-apJ%KSw+yh2c&a zSFvO_+H`^a@GQqwK>6GppQ}gp1!|@kNQK^8_Z~j`otzoHq0Sn#ZCV^fs4jzmc7o#_!@JlU;ex^;PTOEneCF+B)M*pMRkGN%ii2GUnAQgfEu zl|n`Ou90YmYWQ1owa5sq0@Yz`B~uHCdP2J|z9f)M-%eFzxJXw9InfPBe71i-X5!Qu zEbF&jHz%{-awGJgV3fWys@ThE`u^1GHY?Hx6zoN?>-XB3$lv5FeRoO)Jt*?x@=8X@ zJ$ux;RB-7sk`#_Gn>Ll?JMEFm_?VWEh(gju3>26cH1A^_ z$?cZy^j949>SQxt%O~FXWTdQJUa8Z!+J&n;vbG#E? z%f88(wyb2FRWg<jb46ImY;G@3%X2mjreLLF^i2oRMx;(h z^n>%a%@`=tP0{NZ{f>3{vfT~UXFPs_L_nvwdC?6CJ?1=dXQZ-7maF^o$s-|=W4xj@ z-?oJMkg((uNT+a~TU}2GlFJpaq*#0mWY1`{`X`n0KqqDT%7hZfkEZAPp(p=Wv<0j- zccShk8jjjA08R=RmgU^xKY!;Q5;bl^)~^x~_ZsKp42YKz@X{&yDU-7=Bg{ya8^w|{=FQjk)TrwS zgPet@ii2JZpqi%gZ;MbXz4>Vk<0iGaZQm4w+8Z^O63*||t&7=-RvAet}Vo< z?JP~7sA@^BWP?LL2eAk z1KM=zkbz1qQYlZ$MY8)>!%!&}#OYUdZ#Hs&I(dzylMggS>Ukiz>-k~w`eK9X3Uk)> z&LUBR;=-rek@ro>1?^}IB^?DFwb9;0nXqlOZrv`M?_0|4o8ewIVCJ~h?U~#JWLP*P z419CQt&xn;myE%{pD=Ckgd^)Onr?JSajW(2KHu7TX@*JA#cofzTP>Sfoj81)rjEqwZooN>fyP8_q-RH;?`Fn0(>O5xhpNrJqwgy zrD(&p2g(IyVjZ8*lwCaTALG?*9fd6(SMOQVrECN2V7XGe@svYqec3UGRI|Pkv9o?sk%c)5+40(6Y7)Dgr)064a%Hs|i)W)t4Fl&1H~pSwd=R?>lCJDh{L2uvU}Yw%+hJdt4nN zB;c1QovudI#W96hy+FlbqF}K=4_G9_*)2}h4Y_;xA}ytKmuJ2crF3%IhrA9!%*b0I z>-RMq{!d&Iow3!U*_w^&+PlZaJq%NM8`IJfC#+85$VyeU{z3!QEt1)K~535}lG`Ec1iR19TALmJy8`@!LO^jgm!HE|ufM8m=5oapBXLsbnvn+LtTmRF%Nl0L+skUQku2 zRwAaA$8Y5es-!79p=l7ltP8wGBRN(k;YTRpE=3 zM z){qq&%_ldeiug+zOELX5Nc4u7KXtTs?auC(_Yte&N?6k_A)2Fq_OI<@mUc9vbWV^d z!4`3ht_%z^4baoQ2ghN8P@hGNi21Qtfzt(v-j-S{IwRs&he>pwif{3wG@pjw&HS8c zX;F5n1O(u^1v`ISE?fGeWAT)|*@iT`m9OF#I7SB&Re?0GL*g77H z-A*0bnBK}B+Xz|RQJ>>gotqDOgW1|q<6Y@Z8`O9(RnV^R*nI6Wq50Ym7qs2SgHJr# z8@^f(aVMiQUCo`BW=oAX@Be|U+sCp8DAFpgxy5(Lbo5Se6?Y1XQxNb#)W(N^pk1pi z0Rt^f)e(hHY6U_OTsfihN?KRyIf7RpXRgTy1I(y#a`dBI3#Z;xW)W}#{pIbAVj?If z>R^1$>j2lYpS>=b?M(duu845IQBdvewD4|;rC`*H_2b#1R$90oAZ^B|IY)D5FlEE9 zr?+9|`#It)$?t34I1K(h7I#0Xg9o8hHJxvkRT`F8m2gp6=e@aTge37ofsJUE&|q zhuvG#?EFH}5Ys8uU?FO}V}a7JZSR}&?*mwIWhLg(&XS|aYxW}hFf}7`arEFg5=u5y zT{?$39Ws0o@Uw}J_C}sP^igy`m_uYV2A!Hdp_s8-`tDs_}(8Fhp42*fi*z;;HIuGr?lbew5>4z8W(zl z_%#%%DP|nkwX2fDOj9DfGD!0hc6~g1iDx^Gi{BE@=vyYD5$rSh;+%PXa!GnpVsSeJ zd!;E`tQZ^YZCs!Q?RP;D$}27`B|nJct7qPgxuDa`5rDr82PP%SNH--nmFW8zpGA@F~*@QFN9unnKv- zE3aa1xKt$#cJ|sqSfnEVWnxNEF+7}cuymNiv zthNAqiDCP*@5#F4lgt?uP80@P5MwjG(H5%pIok>hA~cheulLe(#3InW_JE5mxB9r)c9=q+~fhAQu-VN1#L zMLqPA*6%R}7_i3be30BJvua&m2DJtbtNAd!oa9@5Kih&P{c%jsK^3~L>9g2%$tvxL zg`F?ANpOIR1Jr<7?ym*?4t8jav^eb1i6T$b%=A+3CcJI<7_zjzl5Oc>=wWy{7{}CA z*cX{gtdtxd6bZ9T9>9eTmBju071f5G;n%OzW za(|r;~w{*{@_+;^+!X;c{v~-Ie!}1?+D)pN|Tn1@?vuz?&EnbhmF@xzZwq0H;E;B zc7cjIAI_;9amKGfMJs_6w2woT+W#UWjWx#Id)I7DvE%e01U~oK{W5Muq%fRxGf%}D zM4R1D{-N|!Zn-7Q_$Ta6M`JR)p+V+EM2r15;?>|dEv4ZhYl`25_AkwBC!(3vJMu;7 zcYEL$e|rud{+w{szlm3&eF&n~u0xBb{*9*f0&VQk)5*V^x4&4T`_b^@X-?Pee`9-} zUv#y4b@;RC?*_~-NwFqy#{Yfv|Bm{9C(QrGGR5K@I)ueW`kb6S2-W@Bf2^3aqXfG^ ze)!CF6}n4|^oLd4-91x|zr6Dt?+Wpg+u4;iE5xKNLhsZoUy?q#bdiGNuj)HFItph* z&nU7@Jfo$hcfa(KR&;7`P|Em0Bg^j%t(C?9qfl} z2RFCvCpjI$Igg8ir1pS&NSwUue$E5@%@yv$O}O~4KY@Q!VH6(HU^sR2z~HlQ*f>sU zdgLGf`4CPB7@gE=KmB&w{<>-4FphZ7pSRfin{XmH)j}3;{Jw@yc<)zTD_(Q`%hMpg zs*nl}+(iER-y!6`%p&lZME~zS<`3GO?|yt*a1T>I1;i8Of~$kxyFfEvXV2*h_h^^b zA*r|zA#@3ksTM9%Fh}BCAnK?Wgr+mlUO@B;^>0{oBUGu~vtl~rH0ZN&@-ZJ4a~BwK zP0*@`*eyyAEJ&KpPo^og=JGSrVbxGINP~0kQ+}yKBzX~Dx3n2$AIV0|n z4FrkIZt)ozpO>Mvy8cY+l278r`DuM@kDTDf{m}E#%oLDkV*V{Bj)PsC zke2PYM;CEwz`@vg^dzMTgwWeIG?f=v30~t`xHYl)f@tBL z2@KG?mb~vVcqV9$Be-eTa)2)DhR`dS!B2WxMHbOWu07AsJ2k7*t}&Wkc5eVuWY7owoEL z)4Lz^+b=3A>q^~ws0Eygix4qB$ReNQ^$o^OtA9IZNx(AH5%Wl9i-{Zk(?Md($C>0% zYy{2}sU7$jwKBB|_DFMW%kqw8fmwMZNe^!NYLRssd2x+^*VtW%ro&lwNJE#W)5q8K z=qDbyiARV08H8XL-@FS^)Bds>-!&AdxJ_?R+FwRg`c#!5NmU7`P<%iK9k8Qa19l`k zM^5nvDB;1?u|<%Y*C;D5`1*|9PH;3^+z@=J?m>AXF^6WFyep+~ZB94;We4sv2QwMC zujubr=Yw)r-HuV4K;;+_ne~JUZX^!Pm0^&F**4m9(UR_B?2`tLw8X%ypA!V97 z+tqYk6~8GQ>x2U}x|EJ=`+~@#`IR0N66*(G-r^YIaS;HjqoY^zbtlAu5%ZTZpE_)R zOr=OT5eZmDB6AkMaF?9WjXme~9d>}3(yvKOud<}32DF{oj0h;x^IS@u*)rGR1CMmw zjtGlVWs^DFx2Rixj>d(jPegAZnNZ z3o(bquiv}C%*OQ+vTFZ+8rEe{SdEVf!P%vXNl@q8`@6sXd62Xs=Vr(tdYo7R%9$XVah{cb(?g@sM$Qvx0;61MB2pA(Cdi-&n(zLN$7lUIT=o#Q;B~`_LvWsl_=!Pf{1>m0KouF-FGlWPH zb8u6yLPNV3xsb56lMr(rr=}`0uZEa>{+QpCSkB{xkzmT{1^zE*- z!cT*(#IZXeYR;dTZ{=f(JGe)Q7@Oe=-8C7N6*8p=D8Z3i{3eWjJ_^G9P3f*Df+Ji{ ze&8f9GLodh9q@*CGg4{^C;w3)X`Tr8&02h$d3aQ5(fy8q@MGu@Gdzc3$b$}j$>bz8 zEhX$0RP1pR$Pu7^JL4uS9{UyLbxJ(AKk**iYEIK zK@mv`29h9xC?Gl0DoH_-WTZhrz*bQa2@(V(DnT-mrHMw8N|xAwNRCQQ-F?PH-S77M z-t*n_-~)xzHYdG(U73{J!m|ssa~1MNYNG9)J9Z#P~U9a2Bd|PCqhx={Qu9JUYzo zwdW(Zs)L)x(O6t7U)i`vI)wx5^E&1gqAqR#K4(JKs-J!KB_)c)Z2JnBrs;PQL(a74 z9KUloSRC#_uT`hx9{5RzgD+4)jYJi=_j2ThnP_l1iios>aF`-^PbV>}OCgYlB1%kE z88366qpR@#EOpg4gb^ND!|-1+WuSJyiwrNKsxHNZSqAZ zYv*6p>$wZ?w{OB#ntmGwZ2TMCQ4o~B)x65~kN*?02=9W;#D6{*E#LnYOYxY|s_D7! z6imYOp4fm~Ukn&X0ug4o**#W$73Fpypvqd@PR_Q`7wknB>3 z#E|H@%baC!A!fS1k#lEGAP$8`1Ylq%&Y*nINuzr}^CLN4IZtouB2{2pirITU`uS-> zH&B)y2>8DO)2h3)JLl%}w@Rl58=sgg8NA?)m$GOJhv;S_1 zVbu?GP7I9{o>1~;92UTtg`YDoML{>nP^Ji#=6q-Wdugs-SO`9hUGwIH$%xPb_G$bx zb^{KL3yf?7@=dV!$R}D>%g{HHthUhTnj}P$W!f6Bt~R?REJogGA7hmGdY5tX<=Y+C zlhG+}2X4dG)Zo9m;b1Klej|{x` zN8wqEU<&eTiBvXr?Hhu-!I$~^T$#zw^Jsu(dE&xJ*brar8^B|_Obl(}obT_~oFvB| zt<&rjqhS|pxngWfy}CGM1DSTNLnwao$c2|&MSGkMFaIjCvq!-OQ6%=11jyqIi<{)A z0((iYR5orsPKpN{zmLnEv4c&jryJnkE+7_{Uz~pdf!$bU5j6l6w3`@Y z6FSH;6nSxN=~RIikL7CiP`Q|N@4wGJ@X!nB`CSnI@=bwZVs`wF$(^rdP);qv_Acd* zcuicmZ(`lHW-#o!gIqLE6X$h2!Dd~1{5iPnLH*ZWGREmO{}_r@fn3%9`8F(~+u-m% zOiTfg3#@dZ=v_5z`Dg2q_oz8gDC0; z;O`RqbWr+em_{W`@QS_je@@#-dZ^G4=(8t**tCrywE{h4>G2bj?GQoV`;f=%V1K3J zB}8yy@{$|1@xcGScVbyM$&-cT9|aI>@$+j?co#A3$*O{TBcDQv@yuXukp;*66c8$ z_gZe7Yaf7fb~#9TG4fN?30~LJPKOl(4W3O~sGMJ%{UR$($M>@$UKPC<$CE@1w=9?E zX)mbUC=u?VFG8m!Mp-S#mmieJC;{2@wq)Xx+X@Nl$tkEi)J}z*Z5YwwT;y==c>M`= zt0;`^aOv@ouRTIs@;na-g@9omq&vwlJ9IVBQc71|TJ!qL=&pP=P47v0z4;In2RP6lR=Yodcf z*lkmyL4qdd`WR(3C@nwC+omFl-ahxiUE*~PLKygA@pQs!a3WiOQ89FuU-MT{)A@Xp zhH0G4%jvGsdkB26Xl8cR$RTR1E7ZiLJc4X1$NklE&qu-kbVtUhpYOo0syNG#vfA*A z#^fy)9v-M$)5aedSy=hxX24f^j+RR9qw@!~T@n^aSGG__Q9l)Tu!pIX3q3rZZ_&`! z{mSq;IdrM;=v;mGzpsHemi6!iQs$;t9Vtbe=uxIt$bd&$CW93VMJemm=k$o3Ln5r(F40(P; zld#j7)fdDy@l57(X z<=D#;yEe#76>TR^36-_odCP`xS^Bovx9VV zE(4b#CYd?K-2s^gto~?57Mnnq2rr64(lz9eC;;8r{sa#4$rU=M6ONO zy(;!1ZpT;n7?cT>!4-cWp8O#L%SXQOoepP6{brq9i|zBh5LcDUP&b)4Nd*v+H9oxq zHmgVO?QIEQrO*Y9Z?w~1i?A2Jp_q%7#u#eLPfx>LR|cz`z!Vqd*c(8CYS&P?9|ZSZ z8F+lOSA=Xr9fo&43GvS4!FLlsx6RvdNYbf)-r+@A0Q3UkT{T)^~)|Y?m-Py%RKll7FTy(!fV*(B_2*6Hm6d!l3 ziVf?KEig9d+hqcn1tY<*FpyHgh;S3>OUq4;kFM$s1+A<=^*hw?n)FfRGco=F9 zG7OV7QoNY1OXAE>k9(13bd%wo$D_ug(uxic!cqkIV_uC^)L{+^tb;MQ>>e?~i;Sp> zLL};Z;_Iia=92A9E=0qn>e*yocyr4o{d5AM<4m`!V>JhtAij1X^RvIe<)7|BatvU~ zO7U3jUsW~wlhz*ajdq^W7W?hewDE7asNf?Q7&@u`S%h;j{O5yzugCulOL6WL6~e24 z!$UB<5^==90t`j{6kqcvLuO}hQJ=RbFGNM`0e;7|*Sd?no(?FTP83WPzvP(wpB2`R znUQ7;#S?mwNq~dQVS zzMBBbY*3XTi0$CRQujHFQrHa{XXX}6k?It@SS|p*uk8v@cU>62*p)X_-C)32ck_4e zn*bZhZRh;_gK!S+rg1RiehF;q3t)I?2P|d{{(Q_vW0MC+J1Wiv23jv}@QtV3CKHn>iqkgM3(aEphKVy~~JgL$P^FWQAgRfjvPI znO~w>GWsgum3ie*Zu%`n8K0X%3#6lVf&=G6KPpQE<`nWTE6tEXxfM_yZ;Gd(AH75R zjgD)35VS$StSES{|3)4EiwlsI*;BzHY-|e8FISqtDhp)H$~=%mgp8OpFJ4eHH#SxVYZvdmF{eBi}aA9|VAZC;>@1y02wqsbcm4 zAmiHZCCYe-DTtGn{Y0Bs%dX|(su}MksR>AA^@Owt5w;T++r)OU`~``i;79N-+!-*$ zY@1my=KO{a*mJ;fezDSZ>QX5TZFb}CRA(m?fvwi`)H^>$w5|3YUV<3|v)G5|+w?aU zUU0OK=st60Im6O5&iB?s7h)&sXz3LRK#eQ!xFP;zZ}#V0}V-t*>TJD=ZJ zKi@y?Gga29RCw{)x z3-O}aDv#{npeQA67wp2?hMlm?>L@oGMDqRnl6ycP;q@T$etZ}|CinU`NN%98BpC>} z+YyW|TC5g*amHQC5x26BTc10b4E6@SNL=9asoyP$`ZEk1S&puj9%K=4Y$Y-SEylGX zs^XQ1j-@=Dq9gdUUZ58Ft-=j7JzK{26pl`-`N?HViZ0GiT-m>I@+F^HJ1*z3o|629 zsqXe&pzJYNgibPL=;8PeZk$=yxWxfV3#b6GmT|2SMoUp?^_2V-l<#TSMV)gLzNAw)W&@$z3{T?A&l{*GvHg}oC*u>|p0nTQQ0P;{|R~{{59pY2u$uaaz zk+M2$+=7yly!#c{3-xGzWNmT=8&!KpcEVCh(-9USLo29PbISo|c6@&>;V0(w5_~bL zz|++pQXg@Q4Lpt?&54n^mYvL@ix^kEJ!#uoNC)&{nNprovW^*Y$4w+n!OU(7Ja>xV z85A?O(K_vY&`~wb{t(yYl=~H6hEfu)Z57P4VAno3f4+%@Zy49|cMq@_xBuxzkI|G< zJ9~KlRL-f1BLXEUMET@H{E7?|94zC@n*8oJDI7|*WZ+ZhuRX1#S*8MI!v@qA{d|7} zyj$bh$H(LHOo-!{B1nQMahLoy4{u`EeNOLDgXjn?CiD|Q=wXAumOB3{r2gBM#@eEc zYXFkxPCwT?)MdhSE%#66k>g1I%+qIfOAS1~}*bnUouzr-3Ql6g=S>PI$2kJ2K59z3CrNgJq{ z=p)I7l;7ieW~k+Zj6caIo-3%dYBei)a(fYzEvi`YmZ6cm^EZ6nFy}p)Tix87&U7E$ z%A=Q9NJMG1c+ot{9Y$!2^bGdr6vYCzi&9? z*i&E~icDEiJ@qQ&{qr7QNk?rAOCfJEQe)xYC8>bjnm@unAX&!-&JGjP$3F|k5CpR8 zV&4g!D5&hvbDyN|*}&L!78bP-#?Ho&dpuHtU1qn0{ujzf78Q!^H?O0-ggna@y#*Kt z=YdGLx>-QocZYL-l5iYkedFyv!4aGm@`;{qVbcIunI|3Y%e;7kO~fiVI&PZc9h@ee z`xze!!4u=b{7!N+0Hqk8NxHu0^7LzOIZ6HdN}s*Kd|9gw+E__NpMW`5Ts$=zyeee2 zzV?Q~{x`s43}pLkWIL+pELgY0oTvAj#2z@A zSeae`)%#14oq@OpZV1}w80X6~7PA?))FQVpB`O363|9Vv=vzMh7|$Ef!0&X0euJds z*Dme3C_=oUWQTm%?CuP2FUY(4>CJ^sz1-!oy@ zGW!Q78=*3uyYl_GDu(wR+csfD zg(&mb8rs7`h)FFuiN`0dv0};GXA*Y`$_c+c<#-L+jj?SO(CQeq>ukS~cqSrUd3?4R zya(EOx+aFxu}nwD$A=*a{AxHsc&`gFeYSdi9U!7v%lao701@fgz1!WyOam#f>Kg}B zV)r8d#RrsN%v}g`w71Z0z%+foeU#dJd09d|DyIB6oSGlEetEvf2n*YS`b)nPHWlZ_AD}j}v zVfXs$KOYQJkpByo;+ngs#Dh{sWK zeWVM3#$dfDU=bkljsxX;dmo^&6o7d|7f=B#GB7zs$mTfaEN8$OjEHUjCu&Qrm~&uLsHzI+0_HN2(b{&qGCpjb4Z zZ{dZ*V<)=&c;l=F=Pf}?sQEO zA{{|&h@B^lHUw3ddQ%CjGWq3WwLS~6Su^&#DaWYZtdqdUBSDHHlXwc;owA83-Iga+ zxg8JRzjPpo8s5Ldd~UVVs+d>}paa#Epx(YL-Xb;CDUJjsnMqhNP0?m!QuAb(k zBvm;9|6&o)-jvA{IH;%n)wXJlS6~5dZ_*Q$PrJ$ck48u?)yA*+|7l8*R{8~|6f<~- zk|;8X*~N=obi?Qd&a}Nxi8uBt=&xT2E<>>0BuK5D0K7`U@+i)ML-WWmfPqtfMPo|T zMt$8oeEhjJCl|#pSKWFybpX6klab?Awr7F*Qx4~v{U}qW8w@qsKZD%g7Wi1q2`Dh> zT^2QIFW$Kmd`6JDbM!i}H@f=BBscPbGKH%3zT5$tSz?ZuCrZ46n{G6d05h%j`KU{u z{i<>ionl13ic=zGO}kk=2s$y8x6|#Dl0WTU%g%P>0m8v{Z)Jf|iHng6Xj|Fa?Ftxh ziN!v#VUVyQwcEtd_$zbkB4i?#$ATI@fK#S7dWf{;=Sl8}768(I?4Ut)#*`qtG&hGR z&aaJUcNW4GF4;E==9CTKRo6zg8ue8kF=jDNh@8^c+BJR}q5zK=00@Ny1}=r&@h$^$ zyu4v>r_3Q@e!k)J@+#O>79ykVmEY5mZ+RadGt?vN_wVc^eESEl|{AFUPd|r&B;|AH(8F%3~}Gjk05>VK=L{(pCtq+ z*sscvS2Wh@O-LaZ4*le{@u9r~|2!)@MHw~bYunVfevOUMbaV%tIK?38O#u>j?vUu; zB(4^p;X|5>Kheu+d_}(ZojO`45KH>tm48;}V~NA4=+B#F>?}bFJ(&l3j9x zzQ4;3L%3RIPuCl`2-6!B9YN^kQF#*ixhC{EPr_O$6Lf%KOwa*_@8e+N*K@r$3w?wO zfm*Z;z}-ugA}p$U^CZs(9}g)U%gHxwpPe$Vb)_mP}_^=-0-JIE!pnP9mG9`K4A zMi<~MtON(eUgV#N83iYFOZJ6%Xd~Pbv#z~P-||9dsTEx6OYO$zW;J|PL)o5nsr9o^ zDp6kXB44Esf+SU81Qy~?NGICB+Tk(L4HDHR)y=cU9xcs7&s0iGqp!dZ2#)o3L7UHg(tnzWV(J0%EtM*H=2>%GIxZ2kODUW@v75Bo zeR7VJ`mM`x(c=s&$qO`lw|`GsyC$ms8n&>f?~Uusc0p=dDzEd!1C*=`1K`N&nn-^w zOq`=^jz{-Ec<6}j;OcuV!eo+^qYczk6Bfx|zsbNbs(5T;0Fq;0aZ#8Zm$1O8AjHHp z{xERMTdih_;_Rx4CK|A9td#nz`Fy3MQ;H{hs7~WTXmR!08(O&j70>z6q_?0a4AZ{h z!y+r)zL*kiuYB=CbibFq=M0wFNLtB-?V-oE#|$+JRW^#9flmFg9gQP{lb!j5ehJnv zrD}i3lNBkn3kcE*gtwpFCg2o{nk*r|RZWF|r8n=n`9lttb6oAhf#Vhe1Y9&;Vd9o@ zt>+e9Aw?}ca$*qUBoJM%T>^L7ayNiU;4V`qRh8@QI9d` zfT5!*uijyOPEYzotI9PDGDIGja|HfJicnTm$Wlq{DHFR3cg9nzx6tC!smff#)F9y^ zQiMUrT&cUMmR>rjqz57gOWOWgIg);hygyr#F+E=)=?2ZCODg(uO65o9zhkk92thrQr|L`|?rRX-g_Z40{t=fImi9;D` z0%s#kOIEcA)jDO#O|l7?`T98>pTBq#JFeS)ugz=*% zE0aWVX0@1Idk-^HY>!ObNtF!QP9H=hX!%dW2RTt`DY^B#0zvJSrHb{{B1BO0q8)-M zex7%5S-!m^dR9(twO|!pcy!|PdG^Z_>5tSejGj!9Ol>bO9KW3`7zi9%-8vyCQ}WIn zVp2_D>WZhE;Jn4J^Yui4WURHj8s>Z2E?nD_aFLgPVK_LbD+PAdEUr~TQG`+%OQzR1 zK!A(tr*oZNbK7soQUU1+MNHAL&{7&3po5%HKev`8ec^5%CMRjLXnEkh=;Il3*UC9S3Cjy27)) z$_lcU9in`JJ9@F#%d^G2p{(Eul{p^bgTBP=;e#zWgIU+>+u8GtWZX~ovgpI5Z~c^o z*MhhJcl#5pt!K85)GFOMHTw7%>oLc%=46yB$GeC2Cu;UkHn-cv-1qc&YT_i2r?LK2 zd(Ha6FgH&}L%Pk*5_00Ey$N-T^{1%vh@>SGe$EpXk35s~C8f!WE`mxYx96SjkIYtx zx+fcQi%c)ra^68H)27xU!|c{7kz4eGuzAfC6S>fuOqktw&YX~rOew1{aAe$#j^ ztEBbgnE3}g2-T?~kotl6aUm?nD65%vAJW|)JhfD*ZaaEIi$A(b3)8&dRSAc%fU~A# zJ}oGsg=&;&=||&e2*ru>?Ukf9ul?bUuCXa`B38cRLZUU3@>Hcl0BezL=kZcFiELps%uJUhC?*-)ew_8fxy_Gm@c;bIr*Ni4 zl`hHlz?dJKD~8oAy4EJpE-G1~w%R_oZ{*pu4_E^k_}brMox)&*042W4+BORYMf@2V z(j@0uyd!0&H#s97GPDi=qEp}H2(rcOb!8RA{r3SB4iV6WW!9%jZMZoE%6*xbGypANcR6GOFcSl)10pu(Qp}FPw*vI3YcI8Tdol zn0pFx?Mh)tMeoA-LOW$2N4QDL%qT$J_K*+|&%Mlx}5PPpau9{Nu;C$1b#s`+Hn+|p-W!z@fmoid5 z?TCq}0OJQe3HmsDX>xu-^CygKnqUNL)j=aVyf@zNc$OpOl{OP>S3Ex98k6pWlljvEp5oAcS*vV=>@S0dVN0`$|izMRM^Bkwpn*9DJNQ2^kjfT=Dy=&pg43`-m z!Ej}+X4tQ_ye^ItPr2h@cb1?X?oyQ~l!;<0L3Ln$4h8@pwx3AkLU+S>zo?c>s3J^W|5Pb^p^ps3X&DNg6p?;Y zGx6+M?-@z!XKS4G$E?DD8cgcu@!&t-SL!))WIHssa+;|n42M@uz{6H!=9YbF(qtejU6)F{BZ1UG(IzgfiLOS zbOr(BD!b$3eS6$aFUt2v?$j&t`;*Xl9tfRs;YwP6f*=P**g~qyG#06Obcr-6$sNKWL>j_kkOHTDSAiAD9%wegL0n^bX0N`D0Q( zyI=M{m;CF-{J*)%wLw+DO1lQSmps^3JHZvk4u}q7ZqtTqkc%>#f41n7HswDFo=^f6 z=TwqVY}g3{yo>dj+0K_&&e}j^JTfXO@>sYAlg>CGoK++FR2#`ZmYjLKRxX^b;Mat^ z_~S1vShx`9@W+HH-qF=7Pkil$grH5#_&j0)C66sko73`MuAYiN?d1_(pDSBNefuU! z;RhPd_L6soRqUpqrh`rTiPU8cV_U#}fc%xy329)#r~H?8?P|m+!awX$x-)oS?3UTj zN%h^#&94USbQg@Lz!S`SdXp7GbzUxmH_lZUW)(?82pV(BS|5`XnN;>2@38^JqL2bf zm(k#kTciy8&V^GOL5P$Qcx>tkRa5?8qM2P` z+ZfEQBZdjZQ@S)qBK=;16I+gw~9raxB1};$*HZJS< z5XcdoYQ_=F?ls?pSYmF4KY+vMMo@fv_$v~pnHVbn6SFa7{|9E%vkrxJ=U{Cp!Da@N zJ2x|Qr?QRld+{;5E5L!ZKZ^_$&rnuxJTPrKW?3&c)?bFKF7cI03i!0_)zD?z13;*u zlJE3QAzH@AyUShmQI2dQ_*rqnNa(|o&z%s=0Z72O+znpHJ$fky_9gEL2E!)n{{?J0 zygD+6FQZ0r#A;7PoR$iDK}+Me*)2zxjvd;|uf6Iq5=|e1IA=c5tz%w)1&7E?fJBQ- z-_x;y!f)(avCP;z--?)jVKGIf!11H3c9tZ-b7OUZg z?ec+}CN)`1Y}KMA<@_U5ri|k%tqXmEuu7DYoBfVeYc8^_zjtICrsax zynu<&_4+#M&wJ83AqJ^LYRT&(GE>4nD=M=G%7k?&jA~24*DMp>aD?Y|Z3xgpfY^X) z#*q}C`6fj%$esx^PnSA_DZn~pHACrZ3;YGsE;V-(bvhvcNW0!0N6!~GJYTnV7>fKA zI8K7FA-C=lFd(DbEwRN;26%8{tb+Frzk=8Tp7}YDRf?KEF(=$GF}tfV+=AL%8F1r# zaNAA#v<{|#qj*7^uof6N^G+Rai$XHMZrH7+^*O*!8LWc2rz}2$?o+%g-C~?Bxt$}U zV?`tS;-TS#32Pb5M^|$Y!n1ATMP_88zmGN^bioWhnAhF*rJt}%J2@V1SJ3Ag9dX#0 z1#@@L^Iu?q%C`ZI?n(T^F$IrgWMP5TAppAFBW(|!U6=tf1)jfC!<@SqLtOA`T~IX6LBt=vxcPH6X6*cQ;-IM2H1 zYC$k19UWF)v0+B1nOV_@qLE<;p(Sjc+T3>Of>F~>2jvyH2soWPTeeT$+PuRNvw#S| zn2wv&frzYY1VT}JPD$$@@Jb~2Un|g)4mq=VezYV+96Uu#qfAF+9`7=~D-c|dQwiqS zif;N(OySoW;!r1tlw0?oH7JrtTjPS`-mXJ8R$@8e(X#9>dkANE+9%N)xFL~g;YXzx zDe*yS1dH_s%{fgGtGipyxx;o>rnDaLKo-B5m)cn}L93bhypdlmra#q-kD--omolrC zUcDo!;Oej4I{gy;oS9(4W;ba?H6xwS z(73c0_j3eqamlN|s)cTeZ_-ob!E)%aG~e73=y3xJbj#fh+uHhfNM6t0ypQ@No~*CL zZQBcv$0GC&rAw=NbSoNH@3B0i9rWneCj4BoU(l9zY9&{^k2c~v8#Zv2|IK#p*_>U? zKDJM6=EOY8CWG0Erhf=S4PWrYh{ML9@`Mr+&a^s)e`Y^ z+ODNj#mMPn_2&L>wkDH#FQgnLA*iZnb29kdDtZFdp@+|FWgEMBKj0prN_Z_36&`Zb z?8o`>jSDO-WON~NxmyzYDU)@5V2i9*Kul}<_O0^+JDZ8s<0OK?%`D5gWKg08EObcYF>FRj_Q~W`kTOL8xrf2w;v`>;Jt%mHIe` z1P{v#2AtXK=^)8*J}JN#2!pB(L5GLdc_Z#GbSQNzy7rcu6N1sWXn~_urL1_R#>+;rat+FMl=h3e3!SY zv8@bf3tdAPLX60)@rLm5m6jTCS~pk`czLR`z4b!Ia6Dd^){J=4Q#gaz5+dI0?_G0y`h%susmpI!OTc zW{^yQJBXVmltu%VpuDfCxpLGz!pH)mx-z65RF0=-7;YMihmD!}JIE7nAp=`}>L%%J zu%S4&VB;r3HBLw6J@UDYF9D~nCa~P?4$Dp^4GDNo`G|FbL}wCCpwF*vbgVSI;iRjQIuWC!95naHdgbPdkQW%E%@=@jBaTNwgc+rj9%o7PvVJXykyqqy*$!ewKq== zhKTG=sCb3Q9s4e4WjEE@HCL7&otx#DuHGrPXiUtL>aLtGq1pZb1LO7b3b zGN^HGQfB?U29Ibi!a=XKr4K3CwB&OvT!K-jv9rwdc0>~gTJ(~{HfDu}NnJN{tWp*x zCk_i}4^;9ab!qM>V<`EIA!OjH$rx*kw>&$0|EYr2C$W`y?zEBnP{-sp>%INxlPqOw zVN8XGgic_jr@yrG8cr>ZQ@E}^eL9EY^pnFEwXe9(sA0QI&{O0kJhOfzP&RS_6T28; zIBqCIZZ$iP@eV^Lllr>#RhQV&HuB>w)mp2tdrg9c!KbnOj;xxT^Ym2k3XN-?_Vz#7QdX0ub~m9J9PAF4MWQ&!_GrS%<-Z&`d#lcx_{n~7e}@+ z(jQ{bC+Zaw-Kn!akHmXejHa6cowe*!(z>2Q$Zux*@gUkCduZS^*f>#dkbN{)m8s@$ z^)sqVyxx8*@qXomZF0zt^)_EU@ivX8B55HAx;`t-fmF4gFm`pEf%mW50~Gl^4DHSJ(CX)9&YbDq$uO$#lF#t4&G9frIoxh3ip6 zAKyliJ3+=Z>+8sxc(b0-YxtoP!IFJcpD|Ar(~>W>khn&tM{ZLZ-&bh*{$T<4Gkr_X zl1xSg()CWx`X_O+Ktx3+XXU)exA4TH@YKNedvtyZ3MY#0Az-_%LQ9?9Y#= zQ34!-S7?vI9{|7rFC+?AO1^ma=SQdm;Be9@_voJ(f(&2?%WWrl{`?4Mz$`xc`TPFi z2!mUOOZ$-Xng7@y9}yf1-$UK-@P?T7Z{*`0@MVs9W7Yls{D>I%9@hs;11&<)tVcW+@q`fQs#26k)V{<^8RUxuK1mIB61mNnn_C?W;+on zU6cI`kso}J?$tVbpjW|X#WFbzdZ#$ zjLL`K`j65S*mgF9Rm>orooq5N%3lGX(p81qtcEEKcL~1^(bh%4CyuW8SQeH>L|ll| zKK@8%0?K)@L}C-&z+r|YBJyV!yIi%YW$9%Ea6(4{Ic@%TCNT5@2|gZPj!+H`MZh$? zp%diwgfnZP$TWozpJHUs@`+R2K1RxOu=l&*Zb}I9ECk!yF0k?WR`(4n*a=NB{cedk z=Q@5+mP81h$|4KL`-8 zGwEFELnM+|mu4mVE=W|j9jtlGJUo~3uSVWC^5pdtY2fC#0!!nSeWLHHfzc@+@D^|d z%hQ9DTQ&6l&-JYDSh>!xVR90{iKB@_#v4eguF$(Yt*9oBeLT@nfT*QPaHgF*Q?2@a zBoUuO%bp=v?eUnok!XvMD?t-;Bib!H_t}nzB=pY$d=-$X$WEUkykq;lMEipPu;IC1 z{p_sAl^3^*_go%tejYu_d7~c}CXi}USpn$*So>Abvt0!ykn&-ue&5}@p(O&si>A@e z9}S?VdU_@X-WH$j3NN~2!eCfoVfNvX(leCpJ%viB7Hm$UM^?BFxVOCMI*>!XO9Iwq z3W6!z)>wac(cZ{C>1P)`G&@w^B2@iumQezrGNYOj+} z*tSe4J|odMa!3Z%>&!3STwUL3&(N;kAaZ{cR~z z>mN4nNm(6|z3(_?8wHj^7bBaDoasT>8BoxVoTzt3G%l8)?EG zUb~$0mj}+|?^e2SgTCPLlL-KWE@llNot^^4o5ETm^Sg^&nTt7(o56}jebv6_RTIjd zT7x~Q{^66V+{|?Uk9(A5aS2Nun*&l;;ep_B&04E>xt>p{%7Zo6i_q6DpnkJDkgCjY z)St?@*Vwa#`8;*lhOv!_9to}nZoN|vSiOV(yx^_`{oOVa+y+C~XJQjo_r)g|-h{U& zIi<$(47G@%GqkO!9=5Lpu7e9^&jPz5N7W2y((UmI9c5r=H3bIj!d9e?i(fZ>sKCe= zrQ-IAq>OvYM;`bVI7($MOAn5-cZ=9!GBdwkcs( zJ$0NH<(V$>nXMdyacfzMw%|VYKF)`{4TO5m_{MO4jp87~;KQ#WjtIvgmAt(0*7l$C8^ z0_1x8LLk$Z3LP0Mass=WS6W`byT*Udr9Vl%NUQsTh;SxpM!j<1Fqn?pe)|wGXIFU2 z1eVpZ{PDyAnwa04{RqEKN(Z7D+%#b--awN#`GAFo8{W#O^ath&AZ^Zcr6W4v47)4s9aevl>eX%peR)X9 zhcjck_W1aq5fX!CXWU**&AC)qC+%qoWrlm7uoNE$Fpnh4VkYPk;#Sf|#Q6VjLuk{8IxnD@-I=fs1&-rK$lnXf~Xjgemz8|b+Q()>{)Tg~QMuHZbTu22O^zYf?5L!7+%KLf+`{iXdH zJUj{0Y2zvB^MKEGfB*WHK$F1}u5_F+{cpXlgUg65-qz~lPcdqsNI82aENdGkXbNOlKTe?pFooGUqFflxmWDwOUxFwmlFSxEWmf0q+B7OwV}m~G?{lZvuD`A8N< z+|e!#kkwB;;0{dHwgqIs^^<73?!W!{w6^fY#31LXrR{Vwz%P+IoWVcECIdeD00v;? z6zPRl9lxb3<(iEhkeiEiDW;)xd!RV6BXJ!kklsps*O&}r0hl9^IC@uQgEznpynzSQ zzrP~|mGZ^ESpbKHezE{;5M{tKXY;^s#2{O&*N05ZUbBiE0zg#udFdEbvDVO{#C!sV zCUw?*cIO93>0Z=n!B$-ViwVG3y2QB*C~GZPKDE3%H6sr;h(?z|rnubztX@$M?4q~e zXi5@)w0QkDBljQ(oqs&SGyWGK(x+m;Ig!dD67pjmkd z_gAmuF=aLKi?#mc7mJDH91O^|N}sR-YK$$|=po^{LB55WuNn%KaBWuN{agKeXn1Ys zdgvWxhy7S?T{pR8$m!}MEf!b0=P$EeN4M%1-B8^bW+g??IG;}g(sGI9!q<$Q`~*h> zWQTZ9o%0^zoqP4`W6u`hAEE{#yZ)Xr@+n5KcpH4{ReXCwo-Scw;aS<+9a0_8!&(9a z=29nw#0+l2IE#-lCtJ|$k**#Lt3CjnKaetJn}CljuxbAsE3bS z;NiyWDirj@XXv} zvp;GS-qMB#*Cej@XR43mm0tjXfU`4ID^dGN+Vov8kLUn#)sVgq083M#7f~%ugKDr_ zU21CZc0G7_ise3%;rqxWVGOBiMZo*SV_n|s-kAz!2!^+61fp_8jP_#iFxVvgsPJTb z4BSNb%o@aPjBRW7q8JOIJnz*nbg6)kV7s=E<6}o>>QZ?IpOjz^fcoAB3#yBKQr}X& zwsA;`m@lExcdXNgz4rLqDd0r&?9K76rCQ$j$&~URAK0ej&s#Etwg9`y5-h8&X0I+) zT<}KufAn9%{RZ=+j1?A=(}h1HsYENGA7lh|9UQL>?pOXqpu_TR-984y1j$?}(AO1o zqEAHbl-beaNGjqQHLi+eU>lH1#`v-VcU+1JSPoRM+3C%#-{~H`kp``%Ju~*YTE(UG z&|Vgko4L`IV1`*b^u(aY#(O^(JUKx^Wuxh@nxWUTxOQJl85Sa4E#RChjF4XCyLP>Y z{@MzUk;UE1KArAR9+HwKcz(9AnYBrk)81Idn>uPW7zry%S%f}N{0%z=ZT_&u$U;=2rmEG}HbXGm~jp&XrgA} zXpb-h11X)Xv!3>qz zXVIM!9f-VrJ{je^w|FE=i{-Nud$>W?R{Tl)OynIIGU$k?}D6VECzMp!-HmG_HteU{If z1_4K1JV$bwtC&t}Om(g+#b@ecbF59xjeiP#HJ_uex8ObNLF+Dkca~Y=p*(`4cK(8+ z3S4~t!MU&z8$&{;VzO1|%b8CfEy#y;dMP`LILUfS;TNQ*TT3;6+!9*1`nWUMg+;CB z(QdMQ|Ai#FSvRbzTTsF(LGWm8>sAxaxZY32<8O03sfj@JzOp3{a8Hk}tqaC3P4a&C z=_leI4nA&KA5!v;bT*lD3xtVhhB*kU2LvWTe>UD-w@O+`=~o7O?|Q_H93uDkv`5ufHh+w-zRHp&uZ?sV(#$KWH|j z=ti93F{*84R@+V4Nq4o|TZDA~1BF)ez)_-Pe9I#lnh1vAv> zb44sB(zEq$QiBX}jj_P-O1+G{$9M8S89a-C%MV?K1Wa?*5KPe9RDt)Rj+q~mJG|?< z;ZPj4$G6j@u2mT#U^7+;tu|tPd(=f7IM@r5z&k%58793R-Dq|eX{fm zZJU^0LZTGGlQ7wF#js%q#JUx&Q$1~}133yWB84UL=$sa<1pO7)$Hf*H9JQoYDTfCb z#;8?1%-x1F+t(`E+<_7`N4uUSoVEPmA`=tAbnC{Q5e5kl0rIK=owsqI$nk82ciPQf zOsj8Z6>fSWYRSq-{L-Ew;h){P`H^6LM^z!+{Q$RljYoZ9?K{IC;mL$meRjr)Y5f|L zzLA|SiyYi;n!5yV7rAo;s?@eF2bIposylRC%v_4;#&IJ`24Ft zLm;o0XQ%gu7Y!0^-th&nCx;1rUy!Ljrh{o4wDXuzdEHR&uMpA_@L8FafCbTmo23la z!FQUw&5Pylg-Zxcq{|Cy{iMzrrXgULc=%{&D zRXtmz{8{-4th09in6#p1(8OP0o8t>UeK`tK*qu!@S&}Lv8XjTyR;>k-J-=uNSLHIT zubVGy*`g`Vfz@hjSYMeVsI8EOZUk)b!(~h8Z=CrG%3NDS^?2V@6TCt7Sl~Mwa^In>( zp*}5o)wt3xPvd4#OLJiHW)Z$Kcde)o# zd}0smcLXQD$T;z=I8l(tib!kM#{&U!Lz)tuWU0yk_j?cSH{%vq ztiPH%uwu2p&qXMjB+!MKKT8q}@^JkI^bex{57wXCVjfH5gAot*dm$AgE+M+roUGf8 zi$kC$6gsAXi}YFFBK~$MV?)&`oEAL>`QmEa1s2ikymiimHG%6ABm{#dgSfwNh z-;yDYX-sn-aF61`B^K$?d6SN>#Gg#F7aE_I`?)W2J)|TVtBlpXxTTHR0pB3j-qrMy zbAM_m0q7zp2=_wOW`o=lj#0ZjzqC`g;n0}(c|uN_rRfCKvYI#{>_(h1Vq}$3r+0h1 zm>Xi44GOP?@6yD~!B%Ah${_m>=E~SDIJ3BG3YcM$)s!udo6g#lC+$=-^3pZ?aqnA} zt(BE@_4%c<9y`kxiV{Z{tjp{053D*9CSV!9+Ox4TeNeduWb#$ueWw_X%|D@Km3Z+)&Qo-WKi`?JuX?h2iRu6K9{HFu_HgOIx}e#CTNChe{dGiITADGR>@6% zLEx2e$Tf}ryg!SuYw=4xY%@=;wqH4rA+Gz5?q6i}z;NFl+l(=i%9m~#Zny*!u^#EI zPZwbe9zGT3(zpO@rSWNN-S%!@dX_zz(H8v6W5((P_N?r5aH5Kxu=tk4_Nzi-(4+7o zPbeB`w+&@WDiP*Hls$_O&4e@aj%*t3DAl7a7R}`q_)kh2$`_!QN;5z4V*MvE#EGeK zuS%@Db{$rvSi(cg;%^=VZWQ<#3OVZhS~ZltCyune??>cw%+0gC)Y1PiQ%pz#hjA6W zM~z`FwTMTILWG_+3qfk8EWhKTDfwr?zER~c8Q!YO1sj@|F^KIHa>F=$%Ymn0w|CM! zzU&_g7lwxb;PO4PrTUHCZ5W|H$cDdlnRpWNCtmyv;l*!i6#mr^!=G@YkSe4A4!V2) z#Ebv)!N1qz->>m9c`9~m0h9cmdn)g5T|6rIFp}YQ%=^O+|6^GzdZAJu>w)xg9w)C&N zg9kbsyY)2=Q6Av>&T$b>vk5Y@?rJ0L^l`pW#}`RGn_eN{FO+Ae&5cIIrfwFzWR$ ztOZw+R_niqm|VtDtHQ)lr&!c|_UZ{>kG77O+9k{{Om?;$21BqkmFI_n*1!G%bKu)} zb=?j42~hyzBz=wtE8_Ac_u(ks!Wn=YL=e6;o-dYu=hmtTw%}}5ukWf!R#918>0b}I z89xI}$w)s^n?3)4_Qvf#zXgYU@N6MbYS9AD5IdNQnz=8<&+Gw zPMp5kl6O$_ZBK#!oX)6c5Dy+L|@6Nqe|F6>YBUfC0F@#pjr@8Rd6H zhXehr4iS=Ip-)zJ_%*{mL!p2NNp5 zCiw`a_GU;?e5bIHB}^{t>>$+hqHv(j?Tki)>BFUyd0&*lfhn;J|HRx(hZVB zk02m8lprBPh=6oRV^M<=Dkip<+3H51;_Lp!2s0? zJwf+Vra=MFG$^k*^KOYAa_s&~hbl-?rD(|IjDpncHCA)0&?@&Da-Cbwd@1zo#bY*C z7aXaA~zz0jfwvy<64}Wme-2s4*bQzo1_|p18Nl+|Z65@C ztsK$wK@Tat$|&&nS}yq+)Fk;HWl1SqrQS+xM_{%Cs5Q$~m*)aHDPQ;sL#fxJ%wOFh z8|&?6ADJJMIxOd|qQR)7fj#?-fGVF`_|;m&qAx&|*MFPYA%X4z%?-4oh^783^t+gA zbJne@NgrdfTQ`75caVoa_zT$0$RN_%>LIiy3yIe%GZ;v2>w07Y^E@T@$wBmLP5@?f zFgxMtY4+S);LcR4a0{3Kc=N7*e@u~#*Wq=j{Ye;ymoeIw~e8%+q{-wF(cl*b$Agg<0lgrc{E_F4%J7i#c2?)X2pU0eo|Ih?QKQn3#1GdXiY^b{wTk( z-HVRb5ru1z2&f8(v%U?J(uBTLsNft3{c-{d1i5}oMEcA&x;s6onZp}XADCzA``t)L z`|~5M(BleNE@MXggj|3hTLw+>>`t$6mQ)ruJ_N<2lGM#n3!Y`sdja4acJ1?F#+-j7 zZGSSYzF`~1gT+@k$|hNhO3 zO^hiA#N7}D)(5Dlm<80bD15X@feT&(k80Imt2=`ca1Ad_6WHXOA!(8`J+XVox-KXT zp1YkLeTN@l(i(og5)b^)$bk98THvRfO@7x{lrhniOZ&9s@;fARxAuYTX0qb??Z}k? z$6cw>Bcm|uY+FwZ3U~-Ef%o&qzyro7f7yhV-jjW?TdvPrd4-DFm$`u2wBK1$@lBZp zpDkaYkR%3Vsy#5Xnyx?D8&r|}Sh+l9tS!@x4xtL20$0BT7Sh_ujh1)V5J9H>c^hC- zCJx1OPD5P!Nx484tOsHl zTn+ZJR+ki;O*v|Kam-h*v^iH+H1gzogSn0-2jvw``xM@;FSqm^n{*AAe zhd2^@&F2N32d`M{u7gQoM$=TJuuZxf%%1SL6GM&@dC0=SZTJBwF<0xAym>*+vjd@4 z6b#m7q8yss{kO%H-Fw^&KVD~2iH4kmC zVXu`%HPj#37P*@IV<;(;#jz8nqQrD_H$f)RPop#At0fq$J3E%Wf>aa%rTnbIYrQ~S z2qQrr`u4=QiHqjt?9Se%%Tr*1A+3l;b_rkwqxhQnTD5^g@KbxzJe)>ZA5`v7%ejy( zxoO2}z8R~`!ZB#5!Jm+|S;nMxA6u!9&F{&UUX7ZYGSsF+or@SCJ*?8yVF{nuNo>)7 zIM<;RT{SFC;#EkaLiCw;x{}RC*S24ox5EHZ)D<4LCDJC3z0-rh_LK=G$<^>xnn|op?)fFG+ zY~@Bt3DltL@5M}uPqoq-7-Dg6hAVB=pA1>}*~dJPY|fsxaoZ9wkwhWI{}fJMKIuW{5ZbWc_n%_uj=!vTj;^grgtV2g;sfd z^*?`NKqOb>x=}=0_MA1rqT_BIi_5*d2z4PUmval~D*39b7|KhRRTRz@KpBiYYE~{Q zNhXdJM#E}_2!)Zm7St*?gw_PBUY~f(i~CXphqkNR3#;*0r1p7Rp;)Bd?57rMS_q)M z4xX7_KG8c|p4LM}LLEY6isB4OfKr$T7DF6#IoaX?2$Q-_X?sO~K#M$_swuVvdq;Ue z8by>TfDxqp&np~ln^oJS1k#M$L=MK%mtQL_({_UdN;fEUTdc6dcqZ z&Jhw*Dc2*cZzda~-jeY=95Zt_^FM#Zo!-hdwcGw%b>VtThf1&&%oNKqU|GmG)tzxI zR(b2@xRNOMT*diab0gw+xJ24Ifp7{fTsYp43gtl>-aJRiJKuxvs*SmsIK6My?=$O6 z3eYs2Qpku%5-Ulvj(TS)l6W?9hUKCj`!ir~m!NiE(UTag%ctG)`Yp``!fna9HV@^HpPXjv6SswMCR+a-FXZ-on0mT!33nOjkm zKT31H;{4jSxlmbAs?f3(Ty;dwd9GDT`IK8YY`w^s)O#byERLg2pNml&U^YX+r>$t0~gr*a(UV&C+R#`MbBvHUCTn~wYsXqZk!#-cXHun|w zN8DPuX(z}aPSJm>g^BeOlVi6DyF9un=#FmBk)c%&Ya5&<(Z6NL1($7=XB?NKQMHRK z=L-s0)CA5fw&cpwRLIwgp1kKgl)`c`pR>=Ns?7tXc^@cCvMR$Ie@R1#y@R+CrpaTO zPj!R-$fT?0`bhmoN{hr7=mZ9`{HAiMTY%nNtiy(LD5AvsRW?Wl1P2pGOwdI2K7MqWFg8%W7%Cw71}f#2MR=a z&pmm_PgJx!avV&f^2*uF`RX~P3t`O%%fYXnkm#|T9x1LV9qmCbic1hAcY2?_ZngFF z#$02u6{A(_AiY#Pcv&j#*!UAE6Evm>x(C$qO`3NdFW-q$2XD|vsydd-4sxKRM`Kbk zE&!wk++emZ_nXEr6%Uns@;2hJDBl>`q!{yqwP|`0lE@jwbQAUwwA)DiHk&cu=_wd0RdJi+%y-Rt)$Vhr$nf@eomKUmFs^gzbRx>{{QX2+uRs3M z^~p{&Mj1HdTSHsD@rG*Yuq|_ugTuP{DZNv#)G1vvNo+?5Jqhvp1n`=Ei43z2(W=}( zOm#Q<jcZpb8WGk{x&u%`F;8O7nh+xL$XTduCGlo?uUkc~B&{1U&%m`T`T>#K8LWYGO3Z zU{gxQd+X#@%8Kn(SDuHARlg>C8R#v&cF#_a$DhD0?v`x*wF+vz!*+2431zGf+?4ih zOTl+`K0m%#BobwV0|Z{U3LGUX7zIHtOF3iaoAY1*>sg=l2aNeXbT z!oeF5F`N0bcPW2$;JXt*p{2IOBwP-`uY9SZ+auJkf)&r|p)>AKfB*BxoaFc)TH)N z&!9gNyw8s5x&Y6xvxJskmFWkLWA2J{-gT_j`30ZEh>EdHPf93FB2X(pUJ$lgN^fEm zOO8a5;<<)hxU9Z(OJ}RGq{zF^+*DsrDAWWh5l5ONE$Sg<`8lNK()a*$G?*S@kTOVW zfnUEHk!b?|a>e=z<3RY+SivAH(yZk0_9<-1SxwlSJ?=L}ODJs(jSk#ZK0l0qm=8{`{5S4pk_B#q^wEl>22(6;>a!JK*bUIl5p$pviyhx_l5ho8$PM{zcOnM%b%2xW-WOf$vuWNCa;kY8a~)#Y2dqR=sp8 z5g>}{>P)dHyzk}_7m=nxJLsp|npP*R9ZnDu!CYhS&y<~ouDF5;h z*+O^iCI;t9GUlEKUV*!Zjv`K0>*)mdX4e)>GH>x!+#{9JX6m)g;iGHu%#z-a@j?C8 zAVy*b#?NdhE!Gv!EK#2pVQg)(fqBmrQnh~7-}f50g;Mgfp^7*b9^bFKx&N+m8{8`F z#0v5Uv|0}R4pm2q->HMWX<)7xD6TXU+ZJdK~y?Ry*eLiD~t5tr2IRG z^9xdw53^QuFp@RUCW6YA2>DSoFgS+iszleSy9Pu($s!8z{h#0KGz2;<%xdbZl4=Us zU_-#a_NEvwFm}(=(4=arB7cK**WhngBTv|)3R;(ZR4nu#><^$oBs)HT6tVsF>B|3U z{2yPG5bsOV=`yTu_6JGijFAW5P5t#@gYBP<@$rJj7T=aO{LeuAV?@~fz;N)C4?XMs zvoS4A&{(gki7TLwfA3(3JOMEhrD2i#Bk4Z|7POb04vlSm?JCvZ2N3-2M+op|O6%>B ztKok(CJ7pY^E!-j{|6KW7efqV$B6hv=9|#{*_aDx%uusj?C1*~9#fgB(kS`b8m>sM)=U1+Zut_yV!*f(O1yS7`m?eBtD7X>&ld$%6`6Q8 za;G0)FGnZ~3R0oDxco1-&X7Pn7vToX+w1{dsm%ek8C6DrHt!e6gh?)$A2WJzW#p|Y z^)CnvK{6hjJ>AuIfKHo?K(2+u9^X9h*wxN+RNf1dS0%1~JlazNj`sNgXDxw)p*WP; z_#BX_KA`Y39)2;6Nj84WKLU;%RXqa53^Qhs58ZRXYWjhcWIoL11j?AG`o#1kh1S4y z=mga9S@I{pc@3D5U4ts4efssRT#5)*iW?f#H*u(W(e@Hl%T_yjY5G1*d;U6DNFE_} z!6}vR({V8f&e`Q9>i4LH{e_7ulZtDhenREb+~yXTEV^Pi+_n~O(jRX^2R?m6%k#g0 z$RP!o{#0f6f*gsN3(D(2&vpagKfx7aj1*+hAps@dBm-0JSI>bIBHZ^hVLUJuw*Zt!ls8WF4pw+;-H?ST7C5xp{xOAFvLFEVo5^PtV3adX29 zS1PEBpw^CE@D;bNBVQ;SB?;2gs{Yx_;SgvcCV`jxW>i4`tp1G-qswv(DqcQtuDG8G z5(T+GY?=xSVMGjc1d^2q!r_%6l0fxydFpy!$4hAJ zf|@x<>gWepH@N}Ug9SdQPM+MNW!@zb;387?UO3aI{EJ6-u8RT_oj3I$ZS!7MjrJA7 zxG7wi$W~F5{=4Z$K>4R@-|z7Xe>x5)UIt)NND!Q8j41V*@y<0v%o$1!dgR_Vh6S^k4D|szm3}0FDAKxnio}lz-ZvnCR?(J z>2JyZ#?#=^PyELJjigzYAtWu*4!f{10-ozkQ@u5?B`QN!!0A?PdEKNGUFsjxMP;s_e|8J1#Ch(x4f3)w9 zMFVy1S1+K=dsh!$kl`r$9sEU#@ecsdPpFoG&-yH`?w-exFH%6>B5UY!;L-lWZo)RX zMjwchLT7cSwZ~|%bi*d)gf9Hs(d`w=PNnE_M8`LQ}fK9l-7K$u7Xfw{qzN) zP#b9H2%JeC>>uJNdC_2##c2BetDPGa2_CT#R1@dx0VhENBTHbw0v%K_bVVz}t8c)m zvYQ70<0O&3I1ou1m#7W#OJ8G{>IA({cPo33xDSTFE;mx5a`5gH9;m;xQ`I zyAx7jyU~~FporzC<^q><$ZIIf!mcc{MGU8xxptM>#NU6UA%7gm(Xy5xZ0u0A4}Ry~BC`o-WdQif~UZKYCL z&oHre8?!Afcd%Pf*{aGjNIT0f_zfUst8zjP*vqy{opT|#;^OrT%tk-Se-7z_#Isi; z`6&6aOFBaWrmDY2>-bBj3abm%zttmns?DNm4vE$B6KO{3Gyzyh;2^sc zE>ML_S9$D3Z{9)9d!=`C zES7yX=k)If{H)&U942Ni=&K|*P{?8{oC~E?L}>a%T%wx>e;ZHceS!r3fs++KgET&rP6x&spt<`1e6(?my`FEdIafw>eVoa3&aL?4-{8?QoA6Byh2r#k{^bn+@lb-eDO`eUB`>i<+;zHNc&0i zo2nRdJn{w*mYWg!5va{2m1E*{m$^ANjxTB;u*ZGgr3Y5G4d$s-$c1humf2Gl=z)TK zG*67&hd;%$v=cj8@wuY8tWK?KW#4Mm?`*tJ3mjBN!MHfi!67!SU+CIHoG}Md0FeBN z6ErF`jUdJFoA?}>RgFZfO!M%=M#I{w;T8Vn4(^_JclAdV4iD+9#!~CSN;9?oRT#fB zBS8VRJ3bxJFg))~B3IxUe2_!aaCU1pyrCHUYndHLFs+KFaJdMtKE1+xdWY5Tb8Dz7 zFHf%X=+bE*+TEZ6a28JgVRtZpjr$>IKZ*I-m}{)gk!_NwanPxHmr!_Tr*v7zk!@aV z;`4A9bspD|x>?`jbR*!5UM1H3H;{lgV@xhXW~M%aC9aG z64m=bB?mjUh}j49Qj2o@YkZ(vZ_>O~X;hXK7U7ZuUbMxQ0Mg!bEc8yN5GsHajwodj z3%o$LsP^FDh48E?OHdSd2{^L8_d%e|*f2x&B5&YtQf@!EaAFi}A7;&mNJ7ZalZ5F+ zxUldZ@{?GFx(Lzo_N;A*CL!u?86pz22R!A4Qe z0(TU@V-aaX?uKq)ZHtfaH?WWa4(yfXK?RR73&BcsHwn)P2?U`&d%9wq0pPkMaADf30>4OS}!IAuV|06LFwpS_VN8> zxtmLcpSiZYt!2VH(|@sdB(g<+e5(ou!s@%$&nYHup>yp1G#5nPX4?++g2jFOtz}!4;p7RO)oeY8?L2j_CquS4en4q2XR!QFv%Cm7mW;Iqo#p0 z^Rld`E|n5&M&F(NUE`T+v-iz&);G=6(ulbzm=N`6t+{hjVI+_EX;lbzQ%zljCYmm$ z)-PNPCKg{VZSCj;^NFq5VQz}H%=1pfATbUxmbv}C)8zcu+4t)`)DQVig_YuJv@>W~ z)TQWLRb45;=Be!W=V@JXKhs%rkUD}Ccuy=vxc2FLX#j;j(3#@9nwWIyVKS(vPhmEX)&uLpc)LpP%d%{pp7YmgF5=r zDuad5*p;53saABE({|rm1XWsa92M;pX2leV+}`e8&PCAm3}!?pGO(?`I~X(pi)G(AT-UMlgIFyn3^UfXbwo>M{47x!28_yGTti)1JZA6_wxp!3Z_}L|jheW5s z0g(Zc0V(V-PHUHYV9xo1D|&zDnMxwBR@Oc};OFcSTJPUUKd#j(?2&U=lI9D=uAI9) z!t;?^{V^${Xoq8bWI~D@Jc{oENAa6`rlPZFaw>UQqId|_o8kMAn9C;#RZT3_J zh@*|7GhB2W9u?oxaX4XWz%ECsXq|yzB$zfy%Tw-j2zUU=34^I#>ft8>rP|hYoThkmVpN;- zB?aX6(=d{aV)$u{YRa8K%p!*WTs^F_O*WB%W6bC;n6A57QpEDkF5J5LgaxO@7iFl} zRU2M>tzFE*$nubimoGucO;8in!P$++gc2$=Wv){+JyW2j+c*O6cVpBUPqh40EB_H} zQHv$lbpvD{*n!&W<&EF1Iy?&Enn)}Q*%Er+#Y|szqL>+~Zz9iKUVHk32=)ON*tIo- z=?$sC=b(=ucb<>aWrNn=C)Cs0w!}2Yr%{;hy6a# zeK>{`-a=WM$-`A)$*tqbgnT&(Qzh$4pX5d3tZLvvUsO;qAxd{)D;iZA>N^7;nPN+5 zLv?ephJ11b2&q899yUQyI@z~h%ZhgC;he~H?CauU;a-~0oz4c_j`0y_$bVxz%5JAd z8i#}4SabEsZcbnE=vzWm{d_;=LXV?>pXSFG_YOMMD*Bb^s0C~^7C&_SgVYcHMe5yp z8uzT8*C{9e+In9AI5yaKkPPkc%3wv$2M>%i?@$AE>C{W-&cOcOob>9k*->9M&rv(2&GO4L)`;~ISM{FtwuJCS`b^; z`r@gf3I?C&F<5ye*nNi6>rUv{&Fc)Mtz#pv$1?{4qmq$XnzMm$`65`B@7`y3|eXS(67N6(gT zcW>(mMxDJ51C>f^LxtYmh^Ofp#2~dhLnyiWfSBXn=ul8Wx=WZ@UqS{(AHeeY&pJ$B ze(>;o9e4}9)f)G&%`KB;bl*vQLig>=R58w!VApAC?QnyfS)yd%xBw``?EEiFl#?@@ zdMjnUX7nt1xhvga-YH=$u^~q7sB*4UPTR>sv2Ee)5W4_Gd^ zp)0|;GJZryfkg|bmvpiw*vF_a(NbVBg=Khv+BqXV)VxYfT1dl$Oqg5<&c3YV?u*JSDy+VkZB5L<*Fsh)R0*3o%X)GwM|X>tBR<~Vv8as2=a+*Ij_I2w4}KDv zGk=ZZUEkrZVHQt%QB_?OEWaEWa=Q@-jy&H;kt6Qdk#CypN_wqIbdH_GbZUP*L;ZFg zaEP$^kSX}SWsxgp;cS_Ya-dB~gu1q5Hli-pWUw!BXm%9_MkQnYO``x9m09x=$|${| zACfuJb}UlB*jVa9vDU=nNdr+#tP+_`z7n3&E5-}PA#BC|B(VG`1jo?1id&?<4@r4R zvmw_LEfz&AT{-y`lJ(xDo3}42q`IWeoiH?d(x}ia+EHr3m=qZs zpLsW*pe4qph0GcZ*I38Q0#a1q>4qLgrYxc1iq#i?okTx?of8&vb#`yhW?thOvrHa9 zjQo1a`u8Bi+T__;Jv2fyH#~iiuNHllJ)$dW;r|RQSYd-TTAN5xJ=$ft4LFYZQ^{gM zCDTc`eSLcGw*vI;2yVKAetG*!dthR=CyyCyRF(b5DS1%|W6uIJRr35e>lYtAXk}e} zt#m`zjv%n9W$Ull!h5IPHat;aP~^X?RjaxzD(5&b3Z9w1LoydQl56fw7)35a@)uZV zFRf``-IA@EytcEla)Ug_iPmf9JGPgl`_>l|&eIvTmf3bH5uS514MT~SRl`b81^Wem z>{b2dz-=MA_N9FTGeeWLc)sZTf?^BLX6NncdUa-_%gn*lu<5h+(m1h90zk{rG0ujp zw-goxK~qct%iG7jYUe?6%$=U~i<@F1Vb)t4g4NV(%Rn3Gcrk9O9i%C&buj3!jOjWs z61_X^#WT|TJ0#bo1-#wp^>rqhzpAw$9G`#?Ls`{@JoDR=-8|X9@46lT*!Vkg4^sq)n=T6Mj#Q24 z&9rH5gAjS&_qav0_0eQGxF}}*m#dHd4*Ykx08*E8l=?4N{x}Gb@7IqW%f9>D_54NZ z7gWG^cuze``tyS?q@ai5BVS%<{TXZMiUy6Hpnt&s{NNoUh$uYCFWk%iGu9Bp1{ym= zjTrs;ftDB;lQE5ZYq$R1ai~uqjarB0*Z2IYzjqM&JKK&3i7H9WAM+3UGuGe@8e8hT z^WeWC8vPU?q9Ass^djw_v4#`SSYLG7z<)(FUPH2NyVu6#0)NIA4kIJ tq5IW;y@ply&-lXszcK$$+!#L`{ymvwn08?OA|CirRn}B0Q?PjTe*jCBe<=U} literal 0 HcmV?d00001 diff --git a/shestakova_maria_lab_6/shestakova_maria_lab_7.py b/shestakova_maria_lab_6/shestakova_maria_lab_7.py new file mode 100644 index 0000000..3665e04 --- /dev/null +++ b/shestakova_maria_lab_6/shestakova_maria_lab_7.py @@ -0,0 +1,50 @@ +import pandas as pd +from sklearn.preprocessing import LabelEncoder +from sklearn.neural_network import MLPClassifier +from sklearn.model_selection import train_test_split +from sklearn.preprocessing import StandardScaler +from sklearn.metrics import confusion_matrix +from sklearn.metrics import classification_report + +# Загрузка данных из файла +data = pd.read_csv('sleep.csv') + +# Удаление ненужных столбцов +data = data.drop(['Person ID', 'Occupation', 'Blood Pressure', 'Heart Rate', 'Daily Steps', 'Sleep Disorder'], axis=1) + +# Преобразование категориальных признаков 'Gender' и 'BMI Category' в числовые значения +label_encoder = LabelEncoder() +data['Gender'] = label_encoder.fit_transform(data['Gender']) +data['BMI Category'] = label_encoder.fit_transform(data['BMI Category']) + +# Выделение признаков и целевой переменной +X = data.drop('Quality of Sleep', axis=1) +y = data['Quality of Sleep'] + +# Разделение данных на обучающую и тестовую выборки +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Масштабирование признаков +scaler = StandardScaler() +X_train_scaled = scaler.fit_transform(X_train) +X_test_scaled = scaler.transform(X_test) + +# Создание и обучение модели +model = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=1000, random_state=42) +model.fit(X_train_scaled, y_train) + +# Оценка точности модели на тестовой выборке +accuracy = model.score(X_test_scaled, y_test) +print(f'Accuracy: {accuracy}') + +# Вывод матрицы ошибок +y_pred = model.predict(X_test_scaled) +cm = confusion_matrix(y_test, y_pred) +print("Confusion Matrix:") +print(cm) + +# Вывод отчета о классификации +y_pred = model.predict(X_test_scaled) +classification_rep = classification_report(y_test, y_pred) +print("Classification Report:") +print(classification_rep) \ No newline at end of file diff --git a/shestakova_maria_lab_6/sleep.csv b/shestakova_maria_lab_6/sleep.csv new file mode 100644 index 0000000..b7e16bd --- /dev/null +++ b/shestakova_maria_lab_6/sleep.csv @@ -0,0 +1,375 @@ +Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder +1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None +2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None +3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None +4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea +5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea +6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia +7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia +8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None +12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None +14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea +18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea +19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia +20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea +32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia +33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None +34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea +51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None +52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None +53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None +68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia +69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None +70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None +71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea +82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea +83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None +84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None +85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None +86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None +88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None +89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None +94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea +95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia +96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None +100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None +101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea +105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea +106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia +107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None +108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None +109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None +110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None +127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea +146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea +147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia +148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia +149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None +150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None +151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None +152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None +163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None +164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None +165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None +166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia +167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None +168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None +169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None +170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea +186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea +187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia +203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia +204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None +205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None +206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea +220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea +221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia +249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None +250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None +251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia +252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia +253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None +263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None +264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None +265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia +266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia +268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None +269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea +278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea +279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia +280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None +282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None +304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia +308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia +309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia +317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea +341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea +342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None +343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None +344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None +345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None +360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None +361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea \ No newline at end of file From 3bffdeeddad6346de31b9c956625bac0751548ca Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=D0=9C=D0=B0=D1=80=D0=B8=D1=8F=20=D0=A8?= Date: Thu, 30 Nov 2023 23:31:54 +0300 Subject: [PATCH 2/2] shestakova_maria_lab_6 is ready --- .../{shestakova_maria_lab_7.py => shestakova_maria_lab_6.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename shestakova_maria_lab_6/{shestakova_maria_lab_7.py => shestakova_maria_lab_6.py} (100%) diff --git a/shestakova_maria_lab_6/shestakova_maria_lab_7.py b/shestakova_maria_lab_6/shestakova_maria_lab_6.py similarity index 100% rename from shestakova_maria_lab_6/shestakova_maria_lab_7.py rename to shestakova_maria_lab_6/shestakova_maria_lab_6.py