From 539b7e32a36173356c8dbaf1149039a458220bc5 Mon Sep 17 00:00:00 2001 From: sodaler Date: Sun, 3 Dec 2023 16:00:39 +0400 Subject: [PATCH] degtyarev_mikhail_lab_4_is_ready --- degtyarev_mikhail_lab_4/Readme.md | 74 +++ degtyarev_mikhail_lab_4/ds_salaries.csv | 608 ++++++++++++++++++++++++ degtyarev_mikhail_lab_4/img.png | Bin 0 -> 26845 bytes degtyarev_mikhail_lab_4/main.py | 41 ++ 4 files changed, 723 insertions(+) create mode 100644 degtyarev_mikhail_lab_4/Readme.md create mode 100644 degtyarev_mikhail_lab_4/ds_salaries.csv create mode 100644 degtyarev_mikhail_lab_4/img.png create mode 100644 degtyarev_mikhail_lab_4/main.py diff --git a/degtyarev_mikhail_lab_4/Readme.md b/degtyarev_mikhail_lab_4/Readme.md new file mode 100644 index 0000000..aba9e22 --- /dev/null +++ b/degtyarev_mikhail_lab_4/Readme.md @@ -0,0 +1,74 @@ +# Лабораторная 3 +## Вариант 9 + +## Задание +Использовать метод кластеризации t-SNE,самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо он подходит для решения сформулированной вамизадачи. + +Задача: +- Можно использовать кластеризацию для группировки компаний на основе их местоположения (company_location) и размера (company_size). Это поможет выделить группы компаний с похожими характеристиками. + +## Описание Программы +Программа выполняет кластеризацию компаний на основе их местоположения (company_location) и размера (company_size) с использованием методов t-SNE и KMeans. + +### Используемые библиотеки +`pandas:` + +Используется для загрузки данных из CSV-файла и работы с ними в виде датафрейма (pd.read_csv, pd.DataFrame). + +`LabelEncoder (из scikit-learn):` + +Применяется для преобразования категориальных переменных (company_location и company_size) в числовые значения (le.fit_transform). + +`TSNE (из scikit-learn):` + +Используется для выполнения уменьшения размерности данных с помощью метода t-SNE (TSNE(n_components=2, random_state=42)). + +`KMeans (из scikit-learn):` + +Применяется для кластеризации данных методом KMeans (KMeans(n_clusters=3, random_state=42)). + +`matplotlib и seaborn:` + +Используются для визуализации данных и построения графика, который отображает результаты кластеризации (plt.figure, sns.scatterplot, plt.title, plt.show). + +### Шаги программы + +**Загрузка данных:** + +Данные о компаниях загружаются из CSV-файла "ds_salaries.csv" с использованием pandas. + +**Преобразование категориальных переменных:** + +Местоположение компаний (company_location) и их размер (company_size) преобразуются из категориальных в числовые значения с помощью LabelEncoder. + +**Выбор признаков:** + +Выбираются признаки для анализа, в данном случае, местоположение и размер компаний. + +**Уменьшение размерности с использованием t-SNE:** + +Применяется метод t-SNE для уменьшения размерности данных до двух компонент. + +**Кластеризация данных с использованием KMeans:** + +Кластеризация данных выполняется с помощью метода KMeans с 3 кластерами, определенными на основе результата t-SNE. + +**Создание и визуализация нового датафрейма:** + +Создается новый датафрейм (data_tsne_df), содержащий новые координаты компаний после применения t-SNE, а также метки кластеров. +Добавляется номер кластера к исходным данным. + +**Визуализация кластеров:** + +Выполняется визуализация результатов кластеризации с использованием библиотеки seaborn. + +### Запуск программы +- Склонировать или скачать код `main.py`. +- Запустите файл в среде, поддерживающей выполнение Python. `python main.py` + +### Результаты +![](img.png) + +На графике представлены компании в двумерном пространстве, где каждая точка относится к конкретному кластеру. Различные цвета точек обозначают принадлежность к разным кластерам. + +Кластеры можно рассматривать как группы компаний с схожими характеристиками местоположения и размера. Компании, находящиеся близко в двумерном пространстве, могут иметь схожие характеристики. diff --git a/degtyarev_mikhail_lab_4/ds_salaries.csv b/degtyarev_mikhail_lab_4/ds_salaries.csv new file mode 100644 index 0000000..4f56347 --- /dev/null +++ b/degtyarev_mikhail_lab_4/ds_salaries.csv @@ -0,0 +1,608 @@ +,work_year,experience_level,employment_type,job_title,salary,salary_currency,salary_in_usd,employee_residence,remote_ratio,company_location,company_size +0,2020,MI,FT,Data Scientist,70000,EUR,79833,DE,0,DE,L +1,2020,SE,FT,Machine Learning Scientist,260000,USD,260000,JP,0,JP,S +2,2020,SE,FT,Big Data Engineer,85000,GBP,109024,GB,50,GB,M +3,2020,MI,FT,Product Data Analyst,20000,USD,20000,HN,0,HN,S +4,2020,SE,FT,Machine Learning Engineer,150000,USD,150000,US,50,US,L +5,2020,EN,FT,Data Analyst,72000,USD,72000,US,100,US,L +6,2020,SE,FT,Lead Data Scientist,190000,USD,190000,US,100,US,S +7,2020,MI,FT,Data Scientist,11000000,HUF,35735,HU,50,HU,L +8,2020,MI,FT,Business Data Analyst,135000,USD,135000,US,100,US,L +9,2020,SE,FT,Lead Data Engineer,125000,USD,125000,NZ,50,NZ,S +10,2020,EN,FT,Data Scientist,45000,EUR,51321,FR,0,FR,S +11,2020,MI,FT,Data Scientist,3000000,INR,40481,IN,0,IN,L +12,2020,EN,FT,Data Scientist,35000,EUR,39916,FR,0,FR,M +13,2020,MI,FT,Lead Data Analyst,87000,USD,87000,US,100,US,L +14,2020,MI,FT,Data Analyst,85000,USD,85000,US,100,US,L +15,2020,MI,FT,Data Analyst,8000,USD,8000,PK,50,PK,L +16,2020,EN,FT,Data Engineer,4450000,JPY,41689,JP,100,JP,S +17,2020,SE,FT,Big Data Engineer,100000,EUR,114047,PL,100,GB,S +18,2020,EN,FT,Data Science Consultant,423000,INR,5707,IN,50,IN,M +19,2020,MI,FT,Lead Data Engineer,56000,USD,56000,PT,100,US,M +20,2020,MI,FT,Machine Learning Engineer,299000,CNY,43331,CN,0,CN,M +21,2020,MI,FT,Product Data Analyst,450000,INR,6072,IN,100,IN,L +22,2020,SE,FT,Data Engineer,42000,EUR,47899,GR,50,GR,L +23,2020,MI,FT,BI Data Analyst,98000,USD,98000,US,0,US,M +24,2020,MI,FT,Lead Data Scientist,115000,USD,115000,AE,0,AE,L +25,2020,EX,FT,Director of Data Science,325000,USD,325000,US,100,US,L +26,2020,EN,FT,Research Scientist,42000,USD,42000,NL,50,NL,L +27,2020,SE,FT,Data Engineer,720000,MXN,33511,MX,0,MX,S +28,2020,EN,CT,Business Data Analyst,100000,USD,100000,US,100,US,L +29,2020,SE,FT,Machine Learning Manager,157000,CAD,117104,CA,50,CA,L +30,2020,MI,FT,Data Engineering Manager,51999,EUR,59303,DE,100,DE,S +31,2020,EN,FT,Big Data Engineer,70000,USD,70000,US,100,US,L +32,2020,SE,FT,Data Scientist,60000,EUR,68428,GR,100,US,L +33,2020,MI,FT,Research Scientist,450000,USD,450000,US,0,US,M +34,2020,MI,FT,Data Analyst,41000,EUR,46759,FR,50,FR,L +35,2020,MI,FT,Data Engineer,65000,EUR,74130,AT,50,AT,L +36,2020,MI,FT,Data Science Consultant,103000,USD,103000,US,100,US,L +37,2020,EN,FT,Machine Learning Engineer,250000,USD,250000,US,50,US,L +38,2020,EN,FT,Data Analyst,10000,USD,10000,NG,100,NG,S +39,2020,EN,FT,Machine Learning Engineer,138000,USD,138000,US,100,US,S +40,2020,MI,FT,Data Scientist,45760,USD,45760,PH,100,US,S +41,2020,EX,FT,Data Engineering Manager,70000,EUR,79833,ES,50,ES,L +42,2020,MI,FT,Machine Learning Infrastructure Engineer,44000,EUR,50180,PT,0,PT,M +43,2020,MI,FT,Data Engineer,106000,USD,106000,US,100,US,L +44,2020,MI,FT,Data Engineer,88000,GBP,112872,GB,50,GB,L +45,2020,EN,PT,ML Engineer,14000,EUR,15966,DE,100,DE,S +46,2020,MI,FT,Data Scientist,60000,GBP,76958,GB,100,GB,S +47,2020,SE,FT,Data Engineer,188000,USD,188000,US,100,US,L +48,2020,MI,FT,Data Scientist,105000,USD,105000,US,100,US,L +49,2020,MI,FT,Data Engineer,61500,EUR,70139,FR,50,FR,L +50,2020,EN,FT,Data Analyst,450000,INR,6072,IN,0,IN,S +51,2020,EN,FT,Data Analyst,91000,USD,91000,US,100,US,L +52,2020,EN,FT,AI Scientist,300000,DKK,45896,DK,50,DK,S +53,2020,EN,FT,Data Engineer,48000,EUR,54742,PK,100,DE,L +54,2020,SE,FL,Computer Vision Engineer,60000,USD,60000,RU,100,US,S +55,2020,SE,FT,Principal Data Scientist,130000,EUR,148261,DE,100,DE,M +56,2020,MI,FT,Data Scientist,34000,EUR,38776,ES,100,ES,M +57,2020,MI,FT,Data Scientist,118000,USD,118000,US,100,US,M +58,2020,SE,FT,Data Scientist,120000,USD,120000,US,50,US,L +59,2020,MI,FT,Data Scientist,138350,USD,138350,US,100,US,M +60,2020,MI,FT,Data Engineer,110000,USD,110000,US,100,US,L +61,2020,MI,FT,Data Engineer,130800,USD,130800,ES,100,US,M +62,2020,EN,PT,Data Scientist,19000,EUR,21669,IT,50,IT,S +63,2020,SE,FT,Data Scientist,412000,USD,412000,US,100,US,L +64,2020,SE,FT,Machine Learning Engineer,40000,EUR,45618,HR,100,HR,S +65,2020,EN,FT,Data Scientist,55000,EUR,62726,DE,50,DE,S +66,2020,EN,FT,Data Scientist,43200,EUR,49268,DE,0,DE,S +67,2020,SE,FT,Data Science Manager,190200,USD,190200,US,100,US,M +68,2020,EN,FT,Data Scientist,105000,USD,105000,US,100,US,S +69,2020,SE,FT,Data Scientist,80000,EUR,91237,AT,0,AT,S +70,2020,MI,FT,Data Scientist,55000,EUR,62726,FR,50,LU,S +71,2020,MI,FT,Data Scientist,37000,EUR,42197,FR,50,FR,S +72,2021,EN,FT,Research Scientist,60000,GBP,82528,GB,50,GB,L +73,2021,EX,FT,BI Data Analyst,150000,USD,150000,IN,100,US,L +74,2021,EX,FT,Head of Data,235000,USD,235000,US,100,US,L +75,2021,SE,FT,Data Scientist,45000,EUR,53192,FR,50,FR,L +76,2021,MI,FT,BI Data Analyst,100000,USD,100000,US,100,US,M +77,2021,MI,PT,3D Computer Vision Researcher,400000,INR,5409,IN,50,IN,M +78,2021,MI,CT,ML Engineer,270000,USD,270000,US,100,US,L +79,2021,EN,FT,Data Analyst,80000,USD,80000,US,100,US,M +80,2021,SE,FT,Data Analytics Engineer,67000,EUR,79197,DE,100,DE,L +81,2021,MI,FT,Data Engineer,140000,USD,140000,US,100,US,L +82,2021,MI,FT,Applied Data Scientist,68000,CAD,54238,GB,50,CA,L +83,2021,MI,FT,Machine Learning Engineer,40000,EUR,47282,ES,100,ES,S +84,2021,EX,FT,Director of Data Science,130000,EUR,153667,IT,100,PL,L +85,2021,MI,FT,Data Engineer,110000,PLN,28476,PL,100,PL,L +86,2021,EN,FT,Data Analyst,50000,EUR,59102,FR,50,FR,M +87,2021,MI,FT,Data Analytics Engineer,110000,USD,110000,US,100,US,L +88,2021,SE,FT,Lead Data Analyst,170000,USD,170000,US,100,US,L +89,2021,SE,FT,Data Analyst,80000,USD,80000,BG,100,US,S +90,2021,SE,FT,Marketing Data Analyst,75000,EUR,88654,GR,100,DK,L +91,2021,EN,FT,Data Science Consultant,65000,EUR,76833,DE,100,DE,S +92,2021,MI,FT,Lead Data Analyst,1450000,INR,19609,IN,100,IN,L +93,2021,SE,FT,Lead Data Engineer,276000,USD,276000,US,0,US,L +94,2021,EN,FT,Data Scientist,2200000,INR,29751,IN,50,IN,L +95,2021,MI,FT,Cloud Data Engineer,120000,SGD,89294,SG,50,SG,L +96,2021,EN,PT,AI Scientist,12000,USD,12000,BR,100,US,S +97,2021,MI,FT,Financial Data Analyst,450000,USD,450000,US,100,US,L +98,2021,EN,FT,Computer Vision Software Engineer,70000,USD,70000,US,100,US,M +99,2021,MI,FT,Computer Vision Software Engineer,81000,EUR,95746,DE,100,US,S +100,2021,MI,FT,Data Analyst,75000,USD,75000,US,0,US,L +101,2021,SE,FT,Data Engineer,150000,USD,150000,US,100,US,L +102,2021,MI,FT,BI Data Analyst,11000000,HUF,36259,HU,50,US,L +103,2021,MI,FT,Data Analyst,62000,USD,62000,US,0,US,L +104,2021,MI,FT,Data Scientist,73000,USD,73000,US,0,US,L +105,2021,MI,FT,Data Analyst,37456,GBP,51519,GB,50,GB,L +106,2021,MI,FT,Research Scientist,235000,CAD,187442,CA,100,CA,L +107,2021,SE,FT,Data Engineer,115000,USD,115000,US,100,US,S +108,2021,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +109,2021,EN,FT,Data Engineer,2250000,INR,30428,IN,100,IN,L +110,2021,SE,FT,Machine Learning Engineer,80000,EUR,94564,DE,50,DE,L +111,2021,SE,FT,Director of Data Engineering,82500,GBP,113476,GB,100,GB,M +112,2021,SE,FT,Lead Data Engineer,75000,GBP,103160,GB,100,GB,S +113,2021,EN,PT,AI Scientist,12000,USD,12000,PK,100,US,M +114,2021,MI,FT,Data Engineer,38400,EUR,45391,NL,100,NL,L +115,2021,EN,FT,Machine Learning Scientist,225000,USD,225000,US,100,US,L +116,2021,MI,FT,Data Scientist,50000,USD,50000,NG,100,NG,L +117,2021,MI,FT,Data Science Engineer,34000,EUR,40189,GR,100,GR,M +118,2021,EN,FT,Data Analyst,90000,USD,90000,US,100,US,S +119,2021,MI,FT,Data Engineer,200000,USD,200000,US,100,US,L +120,2021,MI,FT,Big Data Engineer,60000,USD,60000,ES,50,RO,M +121,2021,SE,FT,Principal Data Engineer,200000,USD,200000,US,100,US,M +122,2021,EN,FT,Data Analyst,50000,USD,50000,US,100,US,M +123,2021,EN,FT,Applied Data Scientist,80000,GBP,110037,GB,0,GB,L +124,2021,EN,PT,Data Analyst,8760,EUR,10354,ES,50,ES,M +125,2021,MI,FT,Principal Data Scientist,151000,USD,151000,US,100,US,L +126,2021,SE,FT,Machine Learning Scientist,120000,USD,120000,US,50,US,S +127,2021,MI,FT,Data Scientist,700000,INR,9466,IN,0,IN,S +128,2021,EN,FT,Machine Learning Engineer,20000,USD,20000,IN,100,IN,S +129,2021,SE,FT,Lead Data Scientist,3000000,INR,40570,IN,50,IN,L +130,2021,EN,FT,Machine Learning Developer,100000,USD,100000,IQ,50,IQ,S +131,2021,EN,FT,Data Scientist,42000,EUR,49646,FR,50,FR,M +132,2021,MI,FT,Applied Machine Learning Scientist,38400,USD,38400,VN,100,US,M +133,2021,SE,FT,Computer Vision Engineer,24000,USD,24000,BR,100,BR,M +134,2021,EN,FT,Data Scientist,100000,USD,100000,US,0,US,S +135,2021,MI,FT,Data Analyst,90000,USD,90000,US,100,US,M +136,2021,MI,FT,ML Engineer,7000000,JPY,63711,JP,50,JP,S +137,2021,MI,FT,ML Engineer,8500000,JPY,77364,JP,50,JP,S +138,2021,SE,FT,Principal Data Scientist,220000,USD,220000,US,0,US,L +139,2021,EN,FT,Data Scientist,80000,USD,80000,US,100,US,M +140,2021,MI,FT,Data Analyst,135000,USD,135000,US,100,US,L +141,2021,SE,FT,Data Science Manager,240000,USD,240000,US,0,US,L +142,2021,SE,FT,Data Engineering Manager,150000,USD,150000,US,0,US,L +143,2021,MI,FT,Data Scientist,82500,USD,82500,US,100,US,S +144,2021,MI,FT,Data Engineer,100000,USD,100000,US,100,US,L +145,2021,SE,FT,Machine Learning Engineer,70000,EUR,82744,BE,50,BE,M +146,2021,MI,FT,Research Scientist,53000,EUR,62649,FR,50,FR,M +147,2021,MI,FT,Data Engineer,90000,USD,90000,US,100,US,L +148,2021,SE,FT,Data Engineering Manager,153000,USD,153000,US,100,US,L +149,2021,SE,FT,Cloud Data Engineer,160000,USD,160000,BR,100,US,S +150,2021,SE,FT,Director of Data Science,168000,USD,168000,JP,0,JP,S +151,2021,MI,FT,Data Scientist,150000,USD,150000,US,100,US,M +152,2021,MI,FT,Data Scientist,95000,CAD,75774,CA,100,CA,L +153,2021,EN,FT,Data Scientist,13400,USD,13400,UA,100,UA,L +154,2021,SE,FT,Data Science Manager,144000,USD,144000,US,100,US,L +155,2021,SE,FT,Data Science Engineer,159500,CAD,127221,CA,50,CA,L +156,2021,MI,FT,Data Scientist,160000,SGD,119059,SG,100,IL,M +157,2021,MI,FT,Applied Machine Learning Scientist,423000,USD,423000,US,50,US,L +158,2021,SE,FT,Data Analytics Manager,120000,USD,120000,US,100,US,M +159,2021,EN,FT,Machine Learning Engineer,125000,USD,125000,US,100,US,S +160,2021,EX,FT,Head of Data,230000,USD,230000,RU,50,RU,L +161,2021,EX,FT,Head of Data Science,85000,USD,85000,RU,0,RU,M +162,2021,MI,FT,Data Engineer,24000,EUR,28369,MT,50,MT,L +163,2021,EN,FT,Data Science Consultant,54000,EUR,63831,DE,50,DE,L +164,2021,EX,FT,Director of Data Science,110000,EUR,130026,DE,50,DE,M +165,2021,SE,FT,Data Specialist,165000,USD,165000,US,100,US,L +166,2021,EN,FT,Data Engineer,80000,USD,80000,US,100,US,L +167,2021,EX,FT,Director of Data Science,250000,USD,250000,US,0,US,L +168,2021,EN,FT,BI Data Analyst,55000,USD,55000,US,50,US,S +169,2021,MI,FT,Data Architect,150000,USD,150000,US,100,US,L +170,2021,MI,FT,Data Architect,170000,USD,170000,US,100,US,L +171,2021,MI,FT,Data Engineer,60000,GBP,82528,GB,100,GB,L +172,2021,EN,FT,Data Analyst,60000,USD,60000,US,100,US,S +173,2021,SE,FT,Principal Data Scientist,235000,USD,235000,US,100,US,L +174,2021,SE,FT,Research Scientist,51400,EUR,60757,PT,50,PT,L +175,2021,SE,FT,Data Engineering Manager,174000,USD,174000,US,100,US,L +176,2021,MI,FT,Data Scientist,58000,MXN,2859,MX,0,MX,S +177,2021,MI,FT,Data Scientist,30400000,CLP,40038,CL,100,CL,L +178,2021,EN,FT,Machine Learning Engineer,81000,USD,81000,US,50,US,S +179,2021,MI,FT,Data Scientist,420000,INR,5679,IN,100,US,S +180,2021,MI,FT,Big Data Engineer,1672000,INR,22611,IN,0,IN,L +181,2021,MI,FT,Data Scientist,76760,EUR,90734,DE,50,DE,L +182,2021,MI,FT,Data Engineer,22000,EUR,26005,RO,0,US,L +183,2021,SE,FT,Finance Data Analyst,45000,GBP,61896,GB,50,GB,L +184,2021,MI,FL,Machine Learning Scientist,12000,USD,12000,PK,50,PK,M +185,2021,MI,FT,Data Engineer,4000,USD,4000,IR,100,IR,M +186,2021,SE,FT,Data Analytics Engineer,50000,USD,50000,VN,100,GB,M +187,2021,EX,FT,Data Science Consultant,59000,EUR,69741,FR,100,ES,S +188,2021,SE,FT,Data Engineer,65000,EUR,76833,RO,50,GB,S +189,2021,MI,FT,Machine Learning Engineer,74000,USD,74000,JP,50,JP,S +190,2021,SE,FT,Data Science Manager,152000,USD,152000,US,100,FR,L +191,2021,EN,FT,Machine Learning Engineer,21844,USD,21844,CO,50,CO,M +192,2021,MI,FT,Big Data Engineer,18000,USD,18000,MD,0,MD,S +193,2021,SE,FT,Data Science Manager,174000,USD,174000,US,100,US,L +194,2021,SE,FT,Research Scientist,120500,CAD,96113,CA,50,CA,L +195,2021,MI,FT,Data Scientist,147000,USD,147000,US,50,US,L +196,2021,EN,FT,BI Data Analyst,9272,USD,9272,KE,100,KE,S +197,2021,SE,FT,Machine Learning Engineer,1799997,INR,24342,IN,100,IN,L +198,2021,SE,FT,Data Science Manager,4000000,INR,54094,IN,50,US,L +199,2021,EN,FT,Data Science Consultant,90000,USD,90000,US,100,US,S +200,2021,MI,FT,Data Scientist,52000,EUR,61467,DE,50,AT,M +201,2021,SE,FT,Machine Learning Infrastructure Engineer,195000,USD,195000,US,100,US,M +202,2021,MI,FT,Data Scientist,32000,EUR,37825,ES,100,ES,L +203,2021,SE,FT,Research Scientist,50000,USD,50000,FR,100,US,S +204,2021,MI,FT,Data Scientist,160000,USD,160000,US,100,US,L +205,2021,MI,FT,Data Scientist,69600,BRL,12901,BR,0,BR,S +206,2021,SE,FT,Machine Learning Engineer,200000,USD,200000,US,100,US,L +207,2021,SE,FT,Data Engineer,165000,USD,165000,US,0,US,M +208,2021,MI,FL,Data Engineer,20000,USD,20000,IT,0,US,L +209,2021,SE,FT,Data Analytics Manager,120000,USD,120000,US,0,US,L +210,2021,MI,FT,Machine Learning Engineer,21000,EUR,24823,SI,50,SI,L +211,2021,MI,FT,Research Scientist,48000,EUR,56738,FR,50,FR,S +212,2021,MI,FT,Data Engineer,48000,GBP,66022,HK,50,GB,S +213,2021,EN,FT,Big Data Engineer,435000,INR,5882,IN,0,CH,L +214,2021,EN,FT,Machine Learning Engineer,21000,EUR,24823,DE,50,DE,M +215,2021,SE,FT,Principal Data Engineer,185000,USD,185000,US,100,US,L +216,2021,EN,PT,Computer Vision Engineer,180000,DKK,28609,DK,50,DK,S +217,2021,MI,FT,Data Scientist,76760,EUR,90734,DE,50,DE,L +218,2021,MI,FT,Machine Learning Engineer,75000,EUR,88654,BE,100,BE,M +219,2021,SE,FT,Data Analytics Manager,140000,USD,140000,US,100,US,L +220,2021,MI,FT,Machine Learning Engineer,180000,PLN,46597,PL,100,PL,L +221,2021,MI,FT,Data Scientist,85000,GBP,116914,GB,50,GB,L +222,2021,MI,FT,Data Scientist,2500000,INR,33808,IN,0,IN,M +223,2021,MI,FT,Data Scientist,40900,GBP,56256,GB,50,GB,L +224,2021,SE,FT,Machine Learning Scientist,225000,USD,225000,US,100,CA,L +225,2021,EX,CT,Principal Data Scientist,416000,USD,416000,US,100,US,S +226,2021,SE,FT,Data Scientist,110000,CAD,87738,CA,100,CA,S +227,2021,MI,FT,Data Scientist,75000,EUR,88654,DE,50,DE,L +228,2021,SE,FT,Data Scientist,135000,USD,135000,US,0,US,L +229,2021,SE,FT,Data Analyst,90000,CAD,71786,CA,100,CA,M +230,2021,EN,FT,Big Data Engineer,1200000,INR,16228,IN,100,IN,L +231,2021,SE,FT,ML Engineer,256000,USD,256000,US,100,US,S +232,2021,SE,FT,Director of Data Engineering,200000,USD,200000,US,100,US,L +233,2021,SE,FT,Data Analyst,200000,USD,200000,US,100,US,L +234,2021,MI,FT,Data Architect,180000,USD,180000,US,100,US,L +235,2021,MI,FT,Head of Data Science,110000,USD,110000,US,0,US,S +236,2021,MI,FT,Research Scientist,80000,CAD,63810,CA,100,CA,M +237,2021,MI,FT,Data Scientist,39600,EUR,46809,ES,100,ES,M +238,2021,EN,FT,Data Scientist,4000,USD,4000,VN,0,VN,M +239,2021,EN,FT,Data Engineer,1600000,INR,21637,IN,50,IN,M +240,2021,SE,FT,Data Scientist,130000,CAD,103691,CA,100,CA,L +241,2021,MI,FT,Data Analyst,80000,USD,80000,US,100,US,L +242,2021,MI,FT,Data Engineer,110000,USD,110000,US,100,US,L +243,2021,SE,FT,Data Scientist,165000,USD,165000,US,100,US,L +244,2021,EN,FT,AI Scientist,1335000,INR,18053,IN,100,AS,S +245,2021,MI,FT,Data Engineer,52500,GBP,72212,GB,50,GB,L +246,2021,EN,FT,Data Scientist,31000,EUR,36643,FR,50,FR,L +247,2021,MI,FT,Data Engineer,108000,TRY,12103,TR,0,TR,M +248,2021,SE,FT,Data Engineer,70000,GBP,96282,GB,50,GB,L +249,2021,SE,FT,Principal Data Analyst,170000,USD,170000,US,100,US,M +250,2021,MI,FT,Data Scientist,115000,USD,115000,US,50,US,L +251,2021,EN,FT,Data Scientist,90000,USD,90000,US,100,US,S +252,2021,EX,FT,Principal Data Engineer,600000,USD,600000,US,100,US,L +253,2021,EN,FT,Data Scientist,2100000,INR,28399,IN,100,IN,M +254,2021,MI,FT,Data Analyst,93000,USD,93000,US,100,US,L +255,2021,SE,FT,Big Data Architect,125000,CAD,99703,CA,50,CA,M +256,2021,MI,FT,Data Engineer,200000,USD,200000,US,100,US,L +257,2021,SE,FT,Principal Data Scientist,147000,EUR,173762,DE,100,DE,M +258,2021,SE,FT,Machine Learning Engineer,185000,USD,185000,US,50,US,L +259,2021,EX,FT,Director of Data Science,120000,EUR,141846,DE,0,DE,L +260,2021,MI,FT,Data Scientist,130000,USD,130000,US,50,US,L +261,2021,SE,FT,Data Analyst,54000,EUR,63831,DE,50,DE,L +262,2021,MI,FT,Data Scientist,1250000,INR,16904,IN,100,IN,S +263,2021,SE,FT,Machine Learning Engineer,4900000,INR,66265,IN,0,IN,L +264,2021,MI,FT,Data Scientist,21600,EUR,25532,RS,100,DE,S +265,2021,SE,FT,Lead Data Engineer,160000,USD,160000,PR,50,US,S +266,2021,MI,FT,Data Engineer,93150,USD,93150,US,0,US,M +267,2021,MI,FT,Data Engineer,111775,USD,111775,US,0,US,M +268,2021,MI,FT,Data Engineer,250000,TRY,28016,TR,100,TR,M +269,2021,EN,FT,Data Engineer,55000,EUR,65013,DE,50,DE,M +270,2021,EN,FT,Data Engineer,72500,USD,72500,US,100,US,L +271,2021,SE,FT,Computer Vision Engineer,102000,BRL,18907,BR,0,BR,M +272,2021,EN,FT,Data Science Consultant,65000,EUR,76833,DE,0,DE,L +273,2021,EN,FT,Machine Learning Engineer,85000,USD,85000,NL,100,DE,S +274,2021,SE,FT,Data Scientist,65720,EUR,77684,FR,50,FR,M +275,2021,EN,FT,Data Scientist,100000,USD,100000,US,100,US,M +276,2021,EN,FT,Data Scientist,58000,USD,58000,US,50,US,L +277,2021,SE,FT,AI Scientist,55000,USD,55000,ES,100,ES,L +278,2021,SE,FT,Data Scientist,180000,TRY,20171,TR,50,TR,L +279,2021,EN,FT,Business Data Analyst,50000,EUR,59102,LU,100,LU,L +280,2021,MI,FT,Data Engineer,112000,USD,112000,US,100,US,L +281,2021,EN,FT,Research Scientist,100000,USD,100000,JE,0,CN,L +282,2021,MI,PT,Data Engineer,59000,EUR,69741,NL,100,NL,L +283,2021,SE,CT,Staff Data Scientist,105000,USD,105000,US,100,US,M +284,2021,MI,FT,Research Scientist,69999,USD,69999,CZ,50,CZ,L +285,2021,SE,FT,Data Science Manager,7000000,INR,94665,IN,50,IN,L +286,2021,SE,FT,Head of Data,87000,EUR,102839,SI,100,SI,L +287,2021,MI,FT,Data Scientist,109000,USD,109000,US,50,US,L +288,2021,MI,FT,Machine Learning Engineer,43200,EUR,51064,IT,50,IT,L +289,2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +290,2022,SE,FT,Data Analyst,155000,USD,155000,US,100,US,M +291,2022,SE,FT,Data Analyst,120600,USD,120600,US,100,US,M +292,2022,MI,FT,Data Scientist,130000,USD,130000,US,0,US,M +293,2022,MI,FT,Data Scientist,90000,USD,90000,US,0,US,M +294,2022,MI,FT,Data Engineer,170000,USD,170000,US,100,US,M +295,2022,MI,FT,Data Engineer,150000,USD,150000,US,100,US,M +296,2022,SE,FT,Data Analyst,102100,USD,102100,US,100,US,M +297,2022,SE,FT,Data Analyst,84900,USD,84900,US,100,US,M +298,2022,SE,FT,Data Scientist,136620,USD,136620,US,100,US,M +299,2022,SE,FT,Data Scientist,99360,USD,99360,US,100,US,M +300,2022,SE,FT,Data Scientist,90000,GBP,117789,GB,0,GB,M +301,2022,SE,FT,Data Scientist,80000,GBP,104702,GB,0,GB,M +302,2022,SE,FT,Data Scientist,146000,USD,146000,US,100,US,M +303,2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M +304,2022,EN,FT,Data Engineer,40000,GBP,52351,GB,100,GB,M +305,2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M +306,2022,SE,FT,Data Analyst,116000,USD,116000,US,0,US,M +307,2022,MI,FT,Data Analyst,106260,USD,106260,US,0,US,M +308,2022,MI,FT,Data Analyst,126500,USD,126500,US,0,US,M +309,2022,EX,FT,Data Engineer,242000,USD,242000,US,100,US,M +310,2022,EX,FT,Data Engineer,200000,USD,200000,US,100,US,M +311,2022,MI,FT,Data Scientist,50000,GBP,65438,GB,0,GB,M +312,2022,MI,FT,Data Scientist,30000,GBP,39263,GB,0,GB,M +313,2022,MI,FT,Data Engineer,60000,GBP,78526,GB,0,GB,M +314,2022,MI,FT,Data Engineer,40000,GBP,52351,GB,0,GB,M +315,2022,SE,FT,Data Scientist,165220,USD,165220,US,100,US,M +316,2022,EN,FT,Data Engineer,35000,GBP,45807,GB,100,GB,M +317,2022,SE,FT,Data Scientist,120160,USD,120160,US,100,US,M +318,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +319,2022,SE,FT,Data Engineer,181940,USD,181940,US,0,US,M +320,2022,SE,FT,Data Engineer,132320,USD,132320,US,0,US,M +321,2022,SE,FT,Data Engineer,220110,USD,220110,US,0,US,M +322,2022,SE,FT,Data Engineer,160080,USD,160080,US,0,US,M +323,2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,L +324,2022,SE,FT,Data Scientist,120000,USD,120000,US,0,US,L +325,2022,SE,FT,Data Analyst,124190,USD,124190,US,100,US,M +326,2022,EX,FT,Data Analyst,130000,USD,130000,US,100,US,M +327,2022,EX,FT,Data Analyst,110000,USD,110000,US,100,US,M +328,2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M +329,2022,MI,FT,Data Analyst,115500,USD,115500,US,100,US,M +330,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +331,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +332,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +333,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +334,2022,SE,FT,Data Engineer,165400,USD,165400,US,100,US,M +335,2022,SE,FT,Data Engineer,132320,USD,132320,US,100,US,M +336,2022,MI,FT,Data Analyst,167000,USD,167000,US,100,US,M +337,2022,SE,FT,Data Engineer,243900,USD,243900,US,100,US,M +338,2022,SE,FT,Data Analyst,136600,USD,136600,US,100,US,M +339,2022,SE,FT,Data Analyst,109280,USD,109280,US,100,US,M +340,2022,SE,FT,Data Engineer,128875,USD,128875,US,100,US,M +341,2022,SE,FT,Data Engineer,93700,USD,93700,US,100,US,M +342,2022,EX,FT,Head of Data Science,224000,USD,224000,US,100,US,M +343,2022,EX,FT,Head of Data Science,167875,USD,167875,US,100,US,M +344,2022,EX,FT,Analytics Engineer,175000,USD,175000,US,100,US,M +345,2022,SE,FT,Data Engineer,156600,USD,156600,US,100,US,M +346,2022,SE,FT,Data Engineer,108800,USD,108800,US,0,US,M +347,2022,SE,FT,Data Scientist,95550,USD,95550,US,0,US,M +348,2022,SE,FT,Data Engineer,113000,USD,113000,US,0,US,L +349,2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M +350,2022,SE,FT,Data Science Manager,161342,USD,161342,US,100,US,M +351,2022,SE,FT,Data Science Manager,137141,USD,137141,US,100,US,M +352,2022,SE,FT,Data Scientist,167000,USD,167000,US,100,US,M +353,2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M +354,2022,SE,FT,Data Engineer,60000,GBP,78526,GB,0,GB,M +355,2022,SE,FT,Data Engineer,50000,GBP,65438,GB,0,GB,M +356,2022,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +357,2022,SE,FT,Data Scientist,211500,USD,211500,US,100,US,M +358,2022,SE,FT,Data Architect,192400,USD,192400,CA,100,CA,M +359,2022,SE,FT,Data Architect,90700,USD,90700,CA,100,CA,M +360,2022,SE,FT,Data Analyst,130000,USD,130000,CA,100,CA,M +361,2022,SE,FT,Data Analyst,61300,USD,61300,CA,100,CA,M +362,2022,SE,FT,Data Analyst,130000,USD,130000,CA,100,CA,M +363,2022,SE,FT,Data Analyst,61300,USD,61300,CA,100,CA,M +364,2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,L +365,2022,SE,FT,Data Scientist,138600,USD,138600,US,100,US,M +366,2022,SE,FT,Data Engineer,136000,USD,136000,US,0,US,M +367,2022,MI,FT,Data Analyst,58000,USD,58000,US,0,US,S +368,2022,EX,FT,Analytics Engineer,135000,USD,135000,US,100,US,M +369,2022,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +370,2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M +371,2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M +372,2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M +373,2022,MI,FT,ETL Developer,50000,EUR,54957,GR,0,GR,M +374,2022,MI,FT,ETL Developer,50000,EUR,54957,GR,0,GR,M +375,2022,EX,FT,Lead Data Engineer,150000,CAD,118187,CA,100,CA,S +376,2022,SE,FT,Data Analyst,132000,USD,132000,US,0,US,M +377,2022,SE,FT,Data Engineer,165400,USD,165400,US,100,US,M +378,2022,SE,FT,Data Architect,208775,USD,208775,US,100,US,M +379,2022,SE,FT,Data Architect,147800,USD,147800,US,100,US,M +380,2022,SE,FT,Data Engineer,136994,USD,136994,US,100,US,M +381,2022,SE,FT,Data Engineer,101570,USD,101570,US,100,US,M +382,2022,SE,FT,Data Analyst,128875,USD,128875,US,100,US,M +383,2022,SE,FT,Data Analyst,93700,USD,93700,US,100,US,M +384,2022,EX,FT,Head of Machine Learning,6000000,INR,79039,IN,50,IN,L +385,2022,SE,FT,Data Engineer,132320,USD,132320,US,100,US,M +386,2022,EN,FT,Machine Learning Engineer,28500,GBP,37300,GB,100,GB,L +387,2022,SE,FT,Data Analyst,164000,USD,164000,US,0,US,M +388,2022,SE,FT,Data Engineer,155000,USD,155000,US,100,US,M +389,2022,MI,FT,Machine Learning Engineer,95000,GBP,124333,GB,0,GB,M +390,2022,MI,FT,Machine Learning Engineer,75000,GBP,98158,GB,0,GB,M +391,2022,MI,FT,AI Scientist,120000,USD,120000,US,0,US,M +392,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +393,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +394,2022,SE,FT,Data Analytics Manager,145000,USD,145000,US,100,US,M +395,2022,SE,FT,Data Analytics Manager,105400,USD,105400,US,100,US,M +396,2022,MI,FT,Machine Learning Engineer,80000,EUR,87932,FR,100,DE,M +397,2022,MI,FT,Data Engineer,90000,GBP,117789,GB,0,GB,M +398,2022,SE,FT,Data Scientist,215300,USD,215300,US,100,US,L +399,2022,SE,FT,Data Scientist,158200,USD,158200,US,100,US,L +400,2022,SE,FT,Data Engineer,209100,USD,209100,US,100,US,L +401,2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,L +402,2022,SE,FT,Data Analyst,115934,USD,115934,US,0,US,M +403,2022,SE,FT,Data Analyst,81666,USD,81666,US,0,US,M +404,2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +405,2022,MI,FT,Data Engineer,75000,GBP,98158,GB,0,GB,M +406,2022,MI,FT,Data Analyst,58000,USD,58000,US,0,US,S +407,2022,SE,FT,Data Engineer,183600,USD,183600,US,100,US,L +408,2022,MI,FT,Data Analyst,40000,GBP,52351,GB,100,GB,M +409,2022,SE,FT,Data Scientist,180000,USD,180000,US,100,US,M +410,2022,MI,FT,Data Scientist,55000,GBP,71982,GB,0,GB,M +411,2022,MI,FT,Data Scientist,35000,GBP,45807,GB,0,GB,M +412,2022,MI,FT,Data Engineer,60000,EUR,65949,GR,100,GR,M +413,2022,MI,FT,Data Engineer,45000,EUR,49461,GR,100,GR,M +414,2022,MI,FT,Data Engineer,60000,GBP,78526,GB,100,GB,M +415,2022,MI,FT,Data Engineer,45000,GBP,58894,GB,100,GB,M +416,2022,SE,FT,Data Scientist,260000,USD,260000,US,100,US,M +417,2022,SE,FT,Data Science Engineer,60000,USD,60000,AR,100,MX,L +418,2022,MI,FT,Data Engineer,63900,USD,63900,US,0,US,M +419,2022,MI,FT,Machine Learning Scientist,160000,USD,160000,US,100,US,L +420,2022,MI,FT,Machine Learning Scientist,112300,USD,112300,US,100,US,L +421,2022,MI,FT,Data Science Manager,241000,USD,241000,US,100,US,M +422,2022,MI,FT,Data Science Manager,159000,USD,159000,US,100,US,M +423,2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,M +424,2022,SE,FT,Data Scientist,80000,USD,80000,US,0,US,M +425,2022,MI,FT,Data Engineer,82900,USD,82900,US,0,US,M +426,2022,SE,FT,Data Engineer,100800,USD,100800,US,100,US,L +427,2022,MI,FT,Data Engineer,45000,EUR,49461,ES,100,ES,M +428,2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,L +429,2022,MI,FT,Data Analyst,30000,GBP,39263,GB,100,GB,M +430,2022,MI,FT,Data Analyst,40000,EUR,43966,ES,100,ES,M +431,2022,MI,FT,Data Analyst,30000,EUR,32974,ES,100,ES,M +432,2022,MI,FT,Data Engineer,80000,EUR,87932,ES,100,ES,M +433,2022,MI,FT,Data Engineer,70000,EUR,76940,ES,100,ES,M +434,2022,MI,FT,Data Engineer,80000,GBP,104702,GB,100,GB,M +435,2022,MI,FT,Data Engineer,70000,GBP,91614,GB,100,GB,M +436,2022,MI,FT,Data Engineer,60000,EUR,65949,ES,100,ES,M +437,2022,MI,FT,Data Engineer,80000,EUR,87932,GR,100,GR,M +438,2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M +439,2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M +440,2022,MI,FT,Data Analyst,40000,EUR,43966,GR,100,GR,M +441,2022,MI,FT,Data Analyst,30000,EUR,32974,GR,100,GR,M +442,2022,MI,FT,Data Engineer,75000,GBP,98158,GB,100,GB,M +443,2022,MI,FT,Data Engineer,60000,GBP,78526,GB,100,GB,M +444,2022,SE,FT,Data Scientist,215300,USD,215300,US,0,US,L +445,2022,MI,FT,Data Engineer,70000,EUR,76940,GR,100,GR,M +446,2022,SE,FT,Data Engineer,209100,USD,209100,US,100,US,L +447,2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,L +448,2022,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M +449,2022,EN,FT,ML Engineer,20000,EUR,21983,PT,100,PT,L +450,2022,SE,FT,Data Engineer,80000,USD,80000,US,100,US,M +451,2022,MI,FT,Machine Learning Developer,100000,CAD,78791,CA,100,CA,M +452,2022,EX,FT,Director of Data Science,250000,CAD,196979,CA,50,CA,L +453,2022,MI,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,S +454,2022,EN,FT,Computer Vision Engineer,125000,USD,125000,US,0,US,M +455,2022,MI,FT,NLP Engineer,240000,CNY,37236,US,50,US,L +456,2022,SE,FT,Data Engineer,105000,USD,105000,US,100,US,M +457,2022,SE,FT,Lead Machine Learning Engineer,80000,EUR,87932,DE,0,DE,M +458,2022,MI,FT,Business Data Analyst,1400000,INR,18442,IN,100,IN,M +459,2022,MI,FT,Data Scientist,2400000,INR,31615,IN,100,IN,L +460,2022,MI,FT,Machine Learning Infrastructure Engineer,53000,EUR,58255,PT,50,PT,L +461,2022,EN,FT,Financial Data Analyst,100000,USD,100000,US,50,US,L +462,2022,MI,PT,Data Engineer,50000,EUR,54957,DE,50,DE,L +463,2022,EN,FT,Data Scientist,1400000,INR,18442,IN,100,IN,M +464,2022,SE,FT,Principal Data Scientist,148000,EUR,162674,DE,100,DE,M +465,2022,EN,FT,Data Engineer,120000,USD,120000,US,100,US,M +466,2022,SE,FT,Research Scientist,144000,USD,144000,US,50,US,L +467,2022,SE,FT,Data Scientist,104890,USD,104890,US,100,US,M +468,2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +469,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +470,2022,MI,FT,Data Analyst,135000,USD,135000,US,100,US,M +471,2022,MI,FT,Data Analyst,50000,USD,50000,US,100,US,M +472,2022,SE,FT,Data Scientist,220000,USD,220000,US,100,US,M +473,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +474,2022,MI,FT,Data Scientist,140000,GBP,183228,GB,0,GB,M +475,2022,MI,FT,Data Scientist,70000,GBP,91614,GB,0,GB,M +476,2022,SE,FT,Data Scientist,185100,USD,185100,US,100,US,M +477,2022,SE,FT,Machine Learning Engineer,220000,USD,220000,US,100,US,M +478,2022,MI,FT,Data Scientist,200000,USD,200000,US,100,US,M +479,2022,MI,FT,Data Scientist,120000,USD,120000,US,100,US,M +480,2022,SE,FT,Machine Learning Engineer,120000,USD,120000,AE,100,AE,S +481,2022,SE,FT,Machine Learning Engineer,65000,USD,65000,AE,100,AE,S +482,2022,EX,FT,Data Engineer,324000,USD,324000,US,100,US,M +483,2022,EX,FT,Data Engineer,216000,USD,216000,US,100,US,M +484,2022,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M +485,2022,SE,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,M +486,2022,SE,FT,Data Scientist,230000,USD,230000,US,100,US,M +487,2022,EN,PT,Data Scientist,100000,USD,100000,DZ,50,DZ,M +488,2022,MI,FL,Data Scientist,100000,USD,100000,CA,100,US,M +489,2022,EN,CT,Applied Machine Learning Scientist,29000,EUR,31875,TN,100,CZ,M +490,2022,SE,FT,Head of Data,200000,USD,200000,MY,100,US,M +491,2022,MI,FT,Principal Data Analyst,75000,USD,75000,CA,100,CA,S +492,2022,MI,FT,Data Scientist,150000,PLN,35590,PL,100,PL,L +493,2022,SE,FT,Machine Learning Developer,100000,CAD,78791,CA,100,CA,M +494,2022,SE,FT,Data Scientist,100000,USD,100000,BR,100,US,M +495,2022,MI,FT,Machine Learning Scientist,153000,USD,153000,US,50,US,M +496,2022,EN,FT,Data Engineer,52800,EUR,58035,PK,100,DE,M +497,2022,SE,FT,Data Scientist,165000,USD,165000,US,100,US,M +498,2022,SE,FT,Research Scientist,85000,EUR,93427,FR,50,FR,L +499,2022,EN,FT,Data Scientist,66500,CAD,52396,CA,100,CA,L +500,2022,SE,FT,Machine Learning Engineer,57000,EUR,62651,NL,100,NL,L +501,2022,MI,FT,Head of Data,30000,EUR,32974,EE,100,EE,S +502,2022,EN,FT,Data Scientist,40000,USD,40000,JP,100,MY,L +503,2022,MI,FT,Machine Learning Engineer,121000,AUD,87425,AU,100,AU,L +504,2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M +505,2022,EN,FT,Data Scientist,120000,AUD,86703,AU,50,AU,M +506,2022,MI,FT,Applied Machine Learning Scientist,75000,USD,75000,BO,100,US,L +507,2022,MI,FT,Research Scientist,59000,EUR,64849,AT,0,AT,L +508,2022,EN,FT,Research Scientist,120000,USD,120000,US,100,US,L +509,2022,MI,FT,Applied Data Scientist,157000,USD,157000,US,100,US,L +510,2022,EN,FT,Computer Vision Software Engineer,150000,USD,150000,AU,100,AU,S +511,2022,MI,FT,Business Data Analyst,90000,CAD,70912,CA,50,CA,L +512,2022,EN,FT,Data Engineer,65000,USD,65000,US,100,US,S +513,2022,SE,FT,Machine Learning Engineer,65000,EUR,71444,IE,100,IE,S +514,2022,EN,FT,Data Analytics Engineer,20000,USD,20000,PK,0,PK,M +515,2022,MI,FT,Data Scientist,48000,USD,48000,RU,100,US,S +516,2022,SE,FT,Data Science Manager,152500,USD,152500,US,100,US,M +517,2022,MI,FT,Data Engineer,62000,EUR,68147,FR,100,FR,M +518,2022,MI,FT,Data Scientist,115000,CHF,122346,CH,0,CH,L +519,2022,SE,FT,Applied Data Scientist,380000,USD,380000,US,100,US,L +520,2022,MI,FT,Data Scientist,88000,CAD,69336,CA,100,CA,M +521,2022,EN,FT,Computer Vision Engineer,10000,USD,10000,PT,100,LU,M +522,2022,MI,FT,Data Analyst,20000,USD,20000,GR,100,GR,S +523,2022,SE,FT,Data Analytics Lead,405000,USD,405000,US,100,US,L +524,2022,MI,FT,Data Scientist,135000,USD,135000,US,100,US,L +525,2022,SE,FT,Applied Data Scientist,177000,USD,177000,US,100,US,L +526,2022,MI,FT,Data Scientist,78000,USD,78000,US,100,US,M +527,2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M +528,2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +529,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +530,2022,MI,FT,Data Analyst,85000,USD,85000,CA,0,CA,M +531,2022,MI,FT,Data Analyst,75000,USD,75000,CA,0,CA,M +532,2022,SE,FT,Machine Learning Engineer,214000,USD,214000,US,100,US,M +533,2022,SE,FT,Machine Learning Engineer,192600,USD,192600,US,100,US,M +534,2022,SE,FT,Data Architect,266400,USD,266400,US,100,US,M +535,2022,SE,FT,Data Architect,213120,USD,213120,US,100,US,M +536,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +537,2022,SE,FT,Data Engineer,155000,USD,155000,US,100,US,M +538,2022,MI,FT,Data Scientist,141300,USD,141300,US,0,US,M +539,2022,MI,FT,Data Scientist,102100,USD,102100,US,0,US,M +540,2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +541,2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +542,2022,MI,FT,Data Engineer,206699,USD,206699,US,0,US,M +543,2022,MI,FT,Data Engineer,99100,USD,99100,US,0,US,M +544,2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +545,2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M +546,2022,SE,FT,Data Engineer,110500,USD,110500,US,100,US,M +547,2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +548,2022,SE,FT,Data Analyst,99050,USD,99050,US,100,US,M +549,2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +550,2022,SE,FT,Data Scientist,205300,USD,205300,US,0,US,L +551,2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,L +552,2022,SE,FT,Data Scientist,176000,USD,176000,US,100,US,M +553,2022,SE,FT,Data Scientist,144000,USD,144000,US,100,US,M +554,2022,SE,FT,Data Engineer,200100,USD,200100,US,100,US,M +555,2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +556,2022,SE,FT,Data Engineer,145000,USD,145000,US,100,US,M +557,2022,SE,FT,Data Engineer,70500,USD,70500,US,0,US,M +558,2022,SE,FT,Data Scientist,205300,USD,205300,US,0,US,M +559,2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,M +560,2022,SE,FT,Analytics Engineer,205300,USD,205300,US,0,US,M +561,2022,SE,FT,Analytics Engineer,184700,USD,184700,US,0,US,M +562,2022,SE,FT,Data Engineer,175100,USD,175100,US,100,US,M +563,2022,SE,FT,Data Engineer,140250,USD,140250,US,100,US,M +564,2022,SE,FT,Data Analyst,116150,USD,116150,US,100,US,M +565,2022,SE,FT,Data Engineer,54000,USD,54000,US,0,US,M +566,2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M +567,2022,MI,FT,Data Analyst,50000,GBP,65438,GB,0,GB,M +568,2022,SE,FT,Data Analyst,80000,USD,80000,US,100,US,M +569,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +570,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +571,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +572,2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +573,2022,SE,FT,Data Analyst,69000,USD,69000,US,100,US,M +574,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +575,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +576,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +577,2022,SE,FT,Data Analyst,150075,USD,150075,US,100,US,M +578,2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +579,2022,SE,FT,Data Engineer,25000,USD,25000,US,100,US,M +580,2022,SE,FT,Data Analyst,126500,USD,126500,US,100,US,M +581,2022,SE,FT,Data Analyst,106260,USD,106260,US,100,US,M +582,2022,SE,FT,Data Engineer,220110,USD,220110,US,100,US,M +583,2022,SE,FT,Data Engineer,160080,USD,160080,US,100,US,M +584,2022,SE,FT,Data Analyst,105000,USD,105000,US,100,US,M +585,2022,SE,FT,Data Analyst,110925,USD,110925,US,100,US,M +586,2022,MI,FT,Data Analyst,35000,GBP,45807,GB,0,GB,M +587,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +588,2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M +589,2022,SE,FT,Data Analyst,60000,USD,60000,US,100,US,M +590,2022,SE,FT,Data Architect,192564,USD,192564,US,100,US,M +591,2022,SE,FT,Data Architect,144854,USD,144854,US,100,US,M +592,2022,SE,FT,Data Scientist,230000,USD,230000,US,100,US,M +593,2022,SE,FT,Data Scientist,150000,USD,150000,US,100,US,M +594,2022,SE,FT,Data Analytics Manager,150260,USD,150260,US,100,US,M +595,2022,SE,FT,Data Analytics Manager,109280,USD,109280,US,100,US,M +596,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +597,2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M +598,2022,MI,FT,Data Scientist,160000,USD,160000,US,100,US,M +599,2022,MI,FT,Data Scientist,130000,USD,130000,US,100,US,M +600,2022,EN,FT,Data Analyst,67000,USD,67000,CA,0,CA,M +601,2022,EN,FT,Data Analyst,52000,USD,52000,CA,0,CA,M +602,2022,SE,FT,Data Engineer,154000,USD,154000,US,100,US,M +603,2022,SE,FT,Data Engineer,126000,USD,126000,US,100,US,M +604,2022,SE,FT,Data Analyst,129000,USD,129000,US,0,US,M +605,2022,SE,FT,Data Analyst,150000,USD,150000,US,100,US,M +606,2022,MI,FT,AI Scientist,200000,USD,200000,IN,100,US,L diff --git a/degtyarev_mikhail_lab_4/img.png b/degtyarev_mikhail_lab_4/img.png new file mode 100644 index 0000000000000000000000000000000000000000..f5d28e1422a5ca3fbba07b1255e76f5b21009a1b GIT binary patch literal 26845 zcmeFZXH-*b+cg>lML<9)y6GY)0s=}kAVrWSy-Qa*(jkC!REmm(UPCXTgY*sxD!qgN zfzU)kZ%T(y&I+LWdEW8;I6uB|&N$q}6!xds+H3i6{GqK#C{a(yE#S zS$B;Vdwvlzzfo_vC2&{i>f_59>d^rKTLDz>n8Se&NMtziqHFo$sO@@V@8R*LNEcrM zxNjwD;*+JN`_86sW3P>SibqO4GZ$;sq*SZV-4NIQSMCL7;ZZ_z`GrQ)A%B^T!x=Q|<> zF%U5mN(^x6mOb&@T44V6?c0uq5(f`Y+xnmJ-(Vjh(A%SnCTMj11?EA~0$Pxzf2In4{2V|P}ar+juh*mII@1vB~9 zcrPj#M~3h;J@edMX7LTnlY(Ki}5`spwXLa#b6EiHBT?S16y4gd0%uq#(BGb=Z@ zU5ravSsD81_gBif#FK-P6J9^#`4q3>!&L`A8^n|q$4v}qAs5*4$Tj1W1Dz1zF0|9p z7joa{!fE7>e)(Ua<(D(^S{2xDKEaCbcj`1zpqMu$p@O1q!LRKnb=+;t&Uqm{xU+G0l1>z5-rmvIC$yU(j(>xemNu)d zPOoM9(~)LAGA-PAIlEO=wep1GJEjKXk&Di8C^bh+hyw+-Ep^rA?Hr){k z0g}v{BEu!1{s_Q)SPd1VdPho4d-gMB!>Uqw8OjC*1{O?tFy1HFskjoKRU47p+t(sM5$o%3yLFo{Pw#nFw?N9LpV*3x@XD} z-_UisR~0NLA;yQ2Q1IM8eA#Qk;)m&qDUZMh4I7j0U*25Y`0Fy%BvcPt-0T}t%U=@3^sNz?5a`9eC!^Q_No7yY;rzgipvxViok*#DRicP;m z9onVHMKQ1e_U2BDwBeruQ+zJuX|ly99i9bWJh!Vxx_d)zqUCC4lm#`ZZartI(WIiesb*K zBJOD%a)Spdl2cfy$moH&wrO;ryTxbd^o_dgAIa{M59XWqeufYxam>12b=90H>*C%Fo#Ur=hImFAnO39G=o%M0wC>4p zb(1-h{lJ%?r15bBO63ZTLY5c849laIsRGG*+2Z2K7TKtA2vP}=T5#Mj^gWbL>3%=i zK|x8=OE}V6cH1Qtn?w}AxbCz4Xti*6bqp2odSrejJkv&ZYyPmCuP+`ow0-ZO?jR+_ z2fLF1t-Dmwe7s#^!I2L2U99843Q!_${@U;Jn;bt8KiOB=q!sQ_^t&@zsSw94kowqI z1^@Nr$;xQ?jPc!|;)DS*>}%gP#&!2>2KS@dM~A;!o!gm%2Y<|dM5L;KBSF_!0vAJU5r)DV1LFp`Yk5Xt;SyPJiW_3H{tmb z-)&BpmEUblaY9qx$iw8t`IFt|69!R2kiqYhI4ThOnLRjqvIc#{_G9SMq;*-=o}glzWMTmbk28_ldKq*t&}z1zzYn0 z_h;cq0}TyIQTS^$k%OFMH@&U+-6mm^3>!z2(Ny`xqlHrGkn7T6v$L}a5f==**Y}Us z{Tze`OJjP8Nl27_l^XM1OZLtE#=1otcB$s%u@*%K^c*bYw`*Td~I8sOS$hXhYNM*YL0D1C#M3Sn%@T0SVY$@ z>X@svX$t=|AzYt3P61BckL6%Dy@Uo!e&wJ^n1ZU_LcSIK1^Vv7XUo|W9(GVgX>1U^ zmb$vhvDWxSf!mCLAMsGCRI}MUdK=KX<|E^#sIFMuV4^x4ZJ7WTnUT z6LZ_L_tJi8=B3g^VleF${^tu@_r0>7%0AhmWw2J8#G;Y$CaL98P^kLImhpk>la5RV zb5cz~Qt=%dG^8jhWphwNWmF}hw;H>L?ow!w~z71mK*;@2Ua-Z~Y8Y06>E806zAO_hL=7nb_|6W;Hu?ktu`ZiDr z7LLr+sN8aepkv#}z&pT6GtWOizF5a4>s--V$Y3oBPkwo%V| zH;b6vrqYw2>!spR1K8TRM4O$|E%w!g6I`^|DuurJ3axo{u(dejr8HJ%-qj605UCbD zSje0MJJgvfNGdDHI5)Vy5OG`il**f_h_2mTXk6BOq^}{)>0?N`%((6#8KU=fz_H+q zSXE(daR@?9*g++2q{^}{Wx+$KvHHlXOsdywy>Z^lu-@Z#-L`?DWmc+M4r0-V^}qwq zpXB%?@`41N4F~2G(!1e0-6aY{Z_M#>4fp5W5oTFywqCj(>z?pT$Z8-rhXc0=W&wT0 z#}8I)Ew{xtK-OHG*PnrR&;Y%%z$gi1r0fd3^bVAjy*Vz z3}0?mv;px&F|qzmPBwEJW2u_bQQ=B+Gh9;H$H&K@9nqKoVU>QH7^{^k=2N$CCF`oBXEwG%`d zoI1rHmmk@oE7;fepH!5WFo>#Tgl7&FZpCxQD-VvAizINR)A=uL*DW-HSHfppH&%%a zg?-o&eRpHEFCtwUL|+gS6L*{9)_Pm?cwYPjy!Pr=u_Ux$@uje^(lc9v+_hhQi9vb{ zIE3Y)_1WY`I-zd8o1KBx?}ZA1qqtXwIzQy8oTG&jGl#NQdQ&DkY>AFgkO_WulnAR{ zb7mjmYE&lO`z35!tn;widv3$JudbS|gPle*>CCEqzd5WI{xV^Sr#?6AeSAa>G1V_>~3|Y zGzWze&yclEX{G__2LN_~<(&w7Pq?Bw#vGdM;9m)1!iV#Cg|}y`#_aiCKhAMpY}U51 zLMYqY5@FzyP?QJK!hL5eUiUoHd@=C>>Mr}XtgX062 zp_^&^R~P4z6um0qM-^9Sc)vn^Y`b5jqc99i0>D&aUZ7`c>Fq3mh7pGCClE6g1-WH` z17I({x-wmF%o)Kt$hWKMEh@f^4VneK2&IS}fH(6^q{HZA!-C}V`c4MuKvLYnrx{`(^S=H5&ObG8(F6 zWHQpeArswF-P}Z>{t@@}-lErGmR-EttKz#sxw)_M==T%8)lRxlIeuabn23Ave!|O} z2*(_}n{IrnLjyq2fGD6!7Z@L*6HpRG;;nv%GfeQBC-+DxX)Ctob66DWUgV1oeX5j% zPL6R^kDDCF@^>#<#W&I{M6+us%54h<52Ynpy&XEWy4%Fyr+)50&MqhFIKU!N$g7!N z3wM*Na)!tSo-fW1ea@U>L&sBr3;-GcLX$G=50KS0vZ+{Jry9fqy$7%^NdAR`L0%vQ zB!7fj$KaZKLpea^B)U$2Nk_&(Ffyoyg*y6V&m0YMS00uX*>*htSRCJrlvH?T^P9j> zBXilv7gz%9&4qV=fBavN!3vLd#6%!v`VGMNY~e%er(D(*B1Camy7ax zq@a@l)p?A6f6KI%u~M>QbmlMe5Heu{16QBjH0+Tm1j?XE7pMdVg(2t=B{)VY%%d~v ze?~po4b1V+SZ9`F4Cxu+jBL>o#O(sG4 z2fg`Ue9@DAwD_Kq4IMm|orZOdAx*pj#<3KSR#`?5R!>Fo5dhA!wlR7Y(tBVcoHu)f z6aaeItwlJuBm=D6A9^zvx!%#+8w=3QXUgDND)7puR?JsQm1sKqn#Xg!$u=ntJ>i?v z!AyxLPHyh1)R)wccb7TnSg(L_9NBvlHWlsC3ufcSJo@z+-+4fut)szX(`>dg#(6sM zM(4L1#`G?;uWReB0S`-KxxBPh05I$h09W!@CcDOdWD+;3vY+6f6S9v^5%ub%u}pf= zYaPZct6+*kp~iyo*HK!6zXFpsHk`q$6-cw*B=80@^_ZX5x#H_YdN3o$%=gfclzJSS zOpoQ#zb@)_v)G;h1ga<+mrH%&?iA5IRcm;CeS!=7RDrc5V_b~X|8_32q_}ZM4?G<} znU#^z;>$t%#6(ItBfJbC`7Vn1Q3F065Y~l-%&=G%=))F*+(l##Y<|08#0|jPFdNDA z@P@4c1&d!ZB*uGhXh83KE=*#3;~z-%itZXjQE$a_ogSERd+l;@Jq97mBrw$$M9h~%iK>Y&%G_El%efjcbckqs$j7(4z9iV~OvGEM-(^lG7+IDxv7DIE~9m@$3|%AIg*^Hx`CCu>hxO zhl!5s@}fg^)hN+ns(!C`Ca&D`5Zc&#ugiy7tSvV~q!?O66H1soPClmQ)Q)f32q2+IH`>QZC(FY{A!4Jn%)t?WvZUVCRHm+*oXkG)9U7sfo8bJV|F!eeRMby&sHu!R zw+6~T0PvWuI39Nj=O8i$j?|OG`5w;$K%@~X?n_@YB{B3XFdf3gVhb17)5RBdk6X&v^8YwoQ1biy z8!Z~eCig-s+Xvjgc+vHM+@dZ~Sp?Z8EiH|huMB^NqX4-N9DhjEF2Z4o&pc*Ag}Q$~ zVQwSQ7Zw15hnaZcVc1yP-`&ge~A=g!Vfv(_L|r`3kd-YAi^npW?1YQ}zI@|21S z{>}8ej{ucyzLZ%=mT~`iVnee>CeO&%DhFvj8SD2{+7uA~XOEM8U3&yj6}i9sn_|T# zE37rP8knVm_9T@Hb5ecLiZ3)2V(&eezYfHyRFrMnvcse=c6H%_e(+`R`>)D68hVm? zvi5U*sSZ!&i~$i0UKvnuYNk?e6{e`WFnunT`)@)gEF7lp@Kt3$$iV*!_%){?=489X zPgGA*7|5$hQ#mS38kZ%$1trzh377YD;bel|WI?+`b^!)D=L(gQiv(_Kabe^OvghXUUu*g0&GD^v-DopX&(cRyOYqo{jsNpp#%ld7VK1~SEWKtBu7oCeY z?UrO^SQ;R{!ZnQxWfEg|^YbIWdF{%DkK3{29WN_&oas4#8k2x7H@c2<{{!vQdUU+d~$fNlO5ayQm{{0Z6RMkIl31 zg%U7`3<4*!yUsN_Ywo;6Cpx8GltYKk#kiOI4BcYP0OqDQX4t$==nC#>YNAF4Z4>WQXU>6r}Bnjs_$; zNtU*9GET!kF17tg8x-P?=S4K9J{bBq{Azk`1bXf^lU7s;+;S`JC&XU_K@AR9fn;r&5==@;Ww-hKY_a1e@~$3PIX301vW={ z<6^uQ+sBxVL|Tm(N;%aDPi(7QwKQVY~5vIygA_ zruYm=^SE=7sUO~~0of6UVEnanGQl+2x1DF=)gtu)^MUaqZrHBCnS)#K7p?${VUTY2 zJ;DHbWGo1>Vu~PiIy3FjfdMM59d9o!NcxF*YZzLA39GUv@ zpIfL;$U2~37t>IyG+y!>dT;vqJ@a-PPFQspLR}I(Pd0j)pkpyRPfr%76PqxN0 zPtI_2*~P_dAXW+fA@MrP$c;r3Tdwvfg<#Uy(Arvc4IN8kvaBp%%`OXQI^$3B{aX#g z-yxNEYH&cR|JY3C*voHqq1tS3DaL}JEhT@ha-DR^M)1nT(~WYmiog@;XMO3JLLzLk z3FLcOCY$Nkl*$iZx8QT1;v;d_?QLF*R^icb7)wqQ0(ryUWNajqZl&vWG!?KlP%|jz zE*B8wW06Cadz;!CS{{%_xlKvrj&h+wJpp$ zdD@!kNJXbUR7@$-@?dWr1voym1#BzezXJ|hQ`w`|fbV5iVPB7RS>e`2DZ<1}e@(y^ zRHXkNxCD$iur>aVM-NX_`c+bTw7sy1c7lG5~s}0nnqN_V={<=OA`a9jmlFw`tg0 zMQiJuL%>n}*YD1poj&Q`?e)?m6cq9E?f^bB$z@QZYF{&bY5%)W(~E;GN;c&RmEWh3 z=rr=9lY)}ECTZtL1WSv?Y95s3WQ{aYE&Kuwb9Le)4Ic)O^kax9?_6~@Ib|FDPW=4* z?e%o1{WnUsu-KG4(pp+O*%HBL0ZFypHdh2}SH7PgHb%_M7Icbl7!-V^10M;yB=U?~ zc{xpcmpdq%8y5M{oUTs)=Ucl)XT+z+PA6lCHqQnw;6Z2JSUM=c-#!^hv2WF9?}2%1 zZPA=0-h2G{&}M68by2^bawS~In-}zUOyGuh|-p!VMjM%~4zpen1pd((|5(=)q!=^TkXUC1gc<)UI!+9L4 z>(`sc!~{70`Z4H~n)b|U>6E`!*4NgtDLx%U*sh&DH#aXDmRNWo>|(fU5D-xU^l}wFKxI?)u_?Z7!JuV-^?JQ8MY* zhl_Meg^E~S;EJ^WFw10a%m`qR6PAh*Z#ti1)p0*-{nrS#JomPM>^Q-@!_aZh2HOV| z-2Ho*|0d!EO=ekHXJwzv92^{PvrvwclmVh7=!e{2AMMYRgkGnvvD_fQg)ur8mz6Hy z0)K7FzitM}56|3*jcpH`q+cKrLLb*XXB-;B4FZ_ZIZ*6hlvGwSOeW$zF({Mc_I3$R z5={#m7k2vyaNV~)r%yEa&x@h5LKlZF;MXa$6%=;+(gK4y-om+CBS2%FCq3pnZZz*n zgV$F{O+SoB%cA^T7hOr4beBe^K(P9sqlFr9^(r%x<(3 zA~8eXLd+cG-$xJci6~0QUd5$$O2;ylF!G1+#Zu%L>jF?hu01|jo{d!CE=~PF`FFY% z`m+K8y!ObT0GLN}*{k$u)&+jNRYRQPK%OQ#5VVmA*TxB_*6n=8CvOKx!#x@rnjH!XczndeCtnQpvnqPCvD;w{y?uv@o(jAIw$ADk1)O<@VcRqQ;d0LImKc&k7LY6eGw zBR6q1Wi?rb+a%ZTh2yF<1^M}9Dxv@8O>}m{2jW_@k>`~5y-dOqm%Piy1L6V5A3HRf z5NV`(lTy$jnh(1TC6SD47Bz6AzM&RKx~h#EeW#>D9+1po^#WjYn93kzJqi9V1Y3=a z4H^D<;Y4IZ35Pexl~QlzY_C$2^2Id@C|cO7#JLZb#MFvZcOA5Ymz~SZt-mvRxUJdp zQ4mzf;$jur*szC8*iOf=sP;ehkTa*jK-<#1Q{aS=hEzz{a5cz%GPXb#z*;QnmcJ(_ zHb%M^5%WBNgIv+uF9pz*B|qV+IxyMW6zfqg*7d{>PXpN7nsC17pF#U;?#-OW2Lo}6 z^}kw3%)fu6LCkNz72WEWa$YHI>x__PWXFlB7!2lXL(7?-74AtZ$(#_;G!zgAaG_Wn zf2kbR<@G$$qX9TMPRf}s(CO^93!VR3H7}mTIT{g8P$7i#j{$b;x*eI2EAb^{@LV75 z(}VpQn8dCDZ{J!(DrE;0=~s91^*v$I#6mVHOk9 z0dR!aZ(eR)u9;ICp~J6=`Zlt8Swwr>8&2A~vWwG=@|Txa;|L>xjDAi~tavfFObk?l zF`rt=qLg5Q2?)9)5YRN^H1E1NAnm!mMD2c0TS+N&zuySSpk_D@q(wOfJ>8<+joTZj zi<@Q=thrXN@kBmwB4q?-C z(`vwJ+e6o(A4CM5y5{7bbHo8e1Z(G?^;`Jpu~%0XMPpx9a1t7=H(F%}({ zG;L7xMY?=CQ>FST>S}YK-LD?st_K<$V3p0DdKz|!HN%aNT^U&>m_L3S^u_RX6MF3rLk-NP2lZEpLsaa{oDcJD_H*`B8Stf1RoyI%w2v@r{NNwlp-c7l`R?%5V%O?30|~!}F){gYb8+=}-z6potZ7(P!(rJ;e^tg47$WKO>&U zy(_T2dIRXfK(_>vm;?HXg&kDvczj-rt=zItu+N6bnxQs9+^;F2*9{?kBVm~04A6M% z&YDN6>D|I{5!9x<)v?6h4^Cs-=%|wvjz-PT)7%;N)Nx8K@rFweDD0(_l;3 z7^thtsX;fBfvm^@VHVKehx9VoUzQq}175v3Hg&A6EVge}zB5-d1Le~gYVgn8db?zi zrl)=Ijs+SHv#*mcD=#-Sn*MwS#r7&B(fQpzK;W>pKqtlqiTN#nC@m_Yx9XB?`35#y z-gsDil_4QsU<99{5ZG^+V0*XSB3x1*$Vb~`AT*`U=nsFO&Ivn%lc~k&9^S(cN(073 zu~DIynMKR-YGs+Z5|T=aet7*(HD}Dbzqqh{gp+e;bvqC?vQr-6psom#!#iiy6`bFO zVm7wMb#bPdEFHL$4HEw6Tna(QbfWcY9hO*)b4$k(SH9l1#)HuRy$?`w8cI#_0CuGm zLIqkFIWK@%xtDcyDbiSrjJ#Tf5}C4-l4gPajK{!r^a#Mj-kgs=*P87;mvQo^n&zOx zQ9X(JtjCs?Y7vLly^6IzSEn~NfmmCODoW3%4VU~gGKypQi_4$(>?w_+k-QT#|G^lK=%m-r+oAH{tj`*sjs0zlXtDH ztxI#{TwN<4{jYLzGUeAZ+OzQN)cIYuhjhAtVuu-!&dS_Y^=jAZma~BRi@KWHHPQLk zgpA=)%EIz7oeiUwj(fCbYVdbw^Xv2L*D$`7zVn}~VLJjFZ+tj&3+s3YJ#hXGS zfC`$Vecj?6%7DbK|2Urj8)pM&Tp0zZ(O&<*S)-LB{@-z7MS58xZ3jC~+{Jpg#8`bb zdnlfSCFU&1S+N9aX>DvJ={oC88R6EZrY@FTz z)qHzv{-aT|%*L(s%OGL=Ki6>Xn7211^rWScxE+qBmSuE*Gu|C9;$Um={ zKje2qUZT|V6+8vS-Vdi*8W$AQS2O-Qt*ihSwObx{9{+OzzoCy^7n zc)9BU$f4Pa1@Ofg)w^b?FEQFcJMmj=#|&Ri*QX&)b5quC?*<;JV_rX~wQx)Mt3LbM z!_{f0*K@yhkxHZ1B3E&=d(#&bPJEtjdNd8R*t>RDW0=U9C~iC|en$|k|=PsR!Wp6DBDkqPyc?j?5P)MF%WLDW;aKmUn;iQhr>S zG1C8JV>ylmNyyHgo6)6YH@CiMqNdN+#!_J7vQJF}Hw|K9*r%R4rU;TMh=dTEqlfwV zE-J}Fe8o-k6MErzZDcZ~N;#c)5*+6n&HwgNn8wt?A_;xzY6J7p?Sew5#*f9Y{UPl7 ze(!s`u->FQ=0igk1Xjk@??(wL(lQpW(c9@k^~6a)Sr`5+#*9#rX%h{`pL!RRl(uML zggs94MQncWz53#=sI-;_Q#t3+lI3Ym(+at1MzF`%Xy|G_FB z%slV)_TWGg+F4Q<{)JPg9VZT2+hh(GJqRR~DK=yPAD1Q+!_!GX!oq)^-80_gSKj+X zNmlm}t&uPI*l-G5x=PLmPy9*nenBP!JZlc8fGOLQmo&O<=|}2*_fx=w*q%WGe~SSD zz7ih&pPYAoi92jXBbHH5eKGsb0LR#Cd5=6;t#~6 z_egiR1{3k~lx-zZ?R=to)fNPD#;YkFagQ(>1`Gtzca_{VL z)wY<*${ln0OdHRX1fj8AaHHErAcR94&-SsO-3mPC1y}raF>nMY!*(yodu2SHFHJ!D zP*2#unzwr@hrjUa%$w3QMsDn{_e!^3!bL8$sbjx?EP%!xiVV4=w0-UYN)_7hAAJ9} zerm#%i!x3%9C(uLku+F$Q_V5vV9w1Q=f*zj7 z=wzs}JhD<~EQFXPJx8%j`138_qlUU-xe)RzduFwTooLzLcp!$9v&sAbeaO#O{AWNl z;^Xsl^DJB}*O58cs1EL0`)QI_Qc}%>=TG+K?AiSRWlJwL)DLR+U1o!&4!TD1586wn zm^gvss?vRZf%I7kx6y*W6s8iO`hv_rz`k{E>XZW{8?#BTeSE%1j(t{%t(LD{Op=Qq za5QiBvxP-geZ!d)!TGfpghg>2ph@D|*iJOnSX^ZtAgna)R*nI+MFlmWdjRMm_B!_h z0zh8bZwZ(%(rr+ENnaAI8-JNO3JUm4V5Az?%eeBFTU)cg{$X7DLqS#;+k5U8oOa%ab${kqg_<2%|ygueR1Ey?9Pr) z?+QwP&VKCWq(YZ&m{GHKQ1QXn!Xf$ZDWahM#6LsaEi8^smX_Z5^^x7#bIRxr#NY(T zPh6r!L%VPUyQNZ0!SK#wK;>(F0jRnQ{pYt4hTkB%S!WyygX=Z6?M zBrvGZmmT5*R637<5-q#{PY!%OlA8o)b~3}K#rdyXFxDs2cp&!g=jKIb_51a9E!cT7 z{Mc!FuA-?i3#XT4)uEdRK*EpChbEbgj_YV@_iL-r8X88cF!4`t%I0Kop&Jzrd>Rxd z$7&{{W4TL;N>wiUN1ulnD@keA&kMc}0Xyv+X!PoiE@O}m-00uxa0Xl+)2Y^K-rq@m z=N$;7*LyaTa0xZ77@RT$&YW6y(r5!p-mkqQYkBNvdKF}^WH<1E=+Dj7KO0afQ&Pp- zs`sXBc2$zi;E~@Lk%;7RXBh}6?e_UL$0o@=+fNnpJZMp})dzZU#Qz!RId~@Pu_X+W z*gS^-_o9$hIDF#CV|)v!O+Q$RFGk^k_*2i^^s|YIw8Ef~VS^lFk|22PnYM1ikvhm9 zbV>$v0o8civ6XZq)WN&8Vf5>JO4HO>$A|a&M0bj< zUjS8nEU@jzKm>qR=(|wpk3*ml_X8s*J9`AK+73vGl;?eE{=;e6nU(73pmF+I&%w*a zpApW8gYnADDc)~HYcS!C!f)(Q1457$jm~J=D6?f7lwocpQNYHem!cLB>u1UR_N2y3 zPdnTIk;c%Nr>`f~RK_NDWrBsTI;Sgjt~U|~2=nx-<9i-&a&oek7it1*pPh~rl=>Q& z;YxV9SqFv7Jx)%}xqA`%4vkuMuFKc|YHwZb?T*d>D6fb${3eZvfY}_2s;49ijS-~M zwSDAmV}yYXpX%M$q639L3nm4NdT!lEjTTip5CDo%2JAIdull=?meQD3ri`5Z#Y`bk zKW!wVGnrc*EejZ6M{;kKJzu5jRY zE!$(Pnul2d8-CpBEyfBpo)(x_={_$zUCx_;CFmaD<(LEnl&Nf1AHurZl`VgsK{t@U zpoxs*iX-LNQ=@kT=^WUy=yMPQ{E}wlDEZBAgAg_n>jDj++gMf5h&_vCK9Y zpVcQPYuqBxbzAeGS`Hf=V1r_%k9eRlOlJDVq&95be8QSaX> z=b|;$khkzHsB$Tl)I$EQ`E3?*07#H8rw>*E93K5=wPfnKg<*ik$Yrn(^`Q~__i`$Z z^>q>fHxeCaB~NS4d9DCChC?_K8D9Pzqk-SYqxg3Yyn%$oesMR)z0n_1pFVpkOw&R- zN>My^Yr1on)j*)}cexN|G^djN&rW(@nwC?&Of7CAW4A+?@+x5Q+AP!Y%(B!5@a-gx-V zpJ|3aNmnfjSQem~jd!Gac{i-0Q?8&)MfC1;{(At|qMW(q(9!2q2js8JIoRL-a7jJ& znsvRRrTE|vH`CrvL5V?;a-1*e@$z+VrMHOOdND&!G3kI8lgkp!G)w%wm-kft$UZ7{vGPtjQ~Y@s=WrQq<9HYm&{N_ZYM zRk;8nC4He&Dx%LldqMLd!*6SLJ}s`?`;z<^+bSMA%0G4npy!Ju zIzB&^S7h~B|EUbVz<9imR%{NS5qV}hRs;Cd2N^a|>Udrf}>*CcI)w?yQ z$~OJM4{Iz^CH=8NKh`v@`H(X!{3h&J~TsvykdP$D4V# zR(!{O&s49*t)um2ZZQi{OLW~9U zV?WjI@J(>dUpVo4RkR{7ud$T~cx1&xOaoA?a2|OP-0^F=)f@>|a$axT?F9O(xoT^B z6#P!B2q3Fs$B8?BmQ(h(`{eFwS{tM9r3a}Kq1N9w^l=lR3V$`bjV=Q_J>_Sh-%C!1 zuRIxZJYPXQY57LOB|)vAuIRm#;qO#E`b51bAY1+n&twsrsCN$&BMX#t2FkEqT|CY7 zF51X5!LQ$7I&t=xta;)CBa|TE7Ipxic<6?FjhicLmH~76Kpe~CpF}4%agU}(R%Xyo zjb9$rs_56ee94+b1w&-aT^>TkBMKb10Zw_M(K3tQGYRfUgwFxEQ;*8|rH##OxD;6g z(ANK*p&95S&$2-kJGCXAVjB>!wIuuHD!YNfH8<77z7|?r=Q&PPwQpMrG%4$r$UXD? zyo=V8<}#@7^fQ>!3A4cqAn23Ue_So6s!v12b1}lrF;i(32M033qY@IV#l8Y%{28b? z@G`tb09(ZWkSKwNEo&05{|*ke649@yfG7mg0nBUe%TbBO7FO=r670veiVeLI#}Vvg z?=>+6CW)?g%~ivq&IzeDp`X)ze3wD;4^|jC#R@>MBcdeRDBcKuw^Du!&+K);63MCp zSvwVfyBObbW%ogdLg~+(*fl|nI zenW#mlnv@-)MZ-V0NyWz7d(i>2g+AFohvaK0`ii9?h3g-s^nhn>0m~h?)O+}`q+t#?BNT)Aabxoy5CT%)@(V~Qw(h*XpmmvVwTNg-1gVGcvV?h)+tKqWaM7Gm*_Of9hgG8X|5DMew}izJ4l{*YNrYZ8q@wEx|St)mm+HbF2 zOsa+2K?eOvC4|Ia>t^LAy@x_quh9u3~WW-F<#1*vi_hUeI22Cd6r!4JGp^DsAj zQ}?uA3Uo7}#iCA+wSwwckislT@DfeAO0Ove$MR@R%AE}@63Y1Xg6s0RhoJ<_x8bwL zHBRDm6E|{v-AzXq-q;^+7G5u&q9HQ$urN+?TqQ=3inpfIVp-Ud|70Y+_oJ6Jg~kUz zrDvyvq<$nwZkBBlt7|sVQ*$SZBex${$@y`k$=^hXG8U4oGW4-sK%WIQH80X;Uq>FE zhn{0VW?ZCZVR@Y6qxJkxev;rM3g+n6EWPvgo&5#9>Pby4n=9bzy}nZXkQ9d|RHK)P zq^5=vXOV!Jv}DiSDVOO^cUF4){YyE;e@a_v)PYi!p~zN#Gt5!pgXar(l{@%Ck%Pqc z4v)0K(k-)6K95<8XASR6CrV?Pmc_spEJ%^V`NZo)l9dsvnsL-bdb`+ERQM3|1I3>q zKfeav#!a?;Fq>Cd0bw-==nR&9^F2G_^Y3K2=lkX}zmqnPUSN=L79RLGWaak&N_w}I zD5i{IUqr#nyM(Fe9*X=f>!d1+ z_4kxSkEb_$Bf|M6nbcoimwnS`8evl{*c5x6wO`<&-d384?F?;73!x8cl^jgB8WzL< zC*{b!0m$04YI?v@ml&xi5bPi5wG1&mdDFG?z0-Cyr!6?T%um3cmR8g)Ho%!D%%EP7 z!j{o$JUGWQg=b{NVd{a#BAVn+-ml;@S|Fkpzm@)G?3VEf>vSC#MKL|{A6t{R3dbil z?GDbYtvTimU__Jea$paD;_IGU!`ZPA)?8&&@!fPkU@D$Cd za1u5!Obl@5{zaJ7g1uFuW7aIKe$HG$pCi75%5+*{D7*RjG|;uoePXNrEz_3}`7bTL z!ks?`a87;*NPuh}q^sJ!aUtoh5Gq=LBPRja`J_vwTIkO%IHr{jZmt(zi{WGWGSg>Q z#eIjKY%~~6{dZx!d@Vm$gQId2(vTb1k~L@kfKcu0#bYbvg2V5i%7)7;fAC3vr=)qw z?aP9{xeNq`nhKGB4~~;0rfKOEb}3izEJOaizNIo1N5CtV^epH9j%`6qjxn4e5kzQ1 zO29egf6Uz%tqK!RUZHMOySkskd6*z2W10mDpJ_6RG#v&+az;Be*Zjm`IH?N{7Rc2DjG>V8}Rdb20b%#Fe5xJj~hCOX)A`c4&B z^2U1~p!ZRZ_w>NiTDwLP7lC8)IzDOSkgoj(RP{kO-=B}`(1xDCX&2&#+ZmW@M>}Qf z7qytxp14Dwiv#`r&&5eWATgHnaX8!WMJ^vN>)_PZ$>Zf`dHK1eJllB%MSRGqGWXfe zwH_K?yLMZTouD`~gFbe6&Ff3INyVhWABpimzjV)RoWaP+K5whRJ&gxw2|)9V+rNyxN%rPHZN>3!%WpSe`Q+!{c#lPHnSdYDfr<~`3Mt^4rC##obv00X7hlbAakb7fQ@rh54 ztwH3S=A#{!jlB~wo`U%z2k+HZhp1H>x2G?ZOQWyv88d-E1ZS419<&x*?u)SS*oTT) zU}h(D?mRV;c}+F{?c^l%Qp&jK{>EBCRMsy3+a67RQsIL}2FHdS47FcO$C3E`DNFl4 z!D;zszmtTi@fO&yIn&tHP_=K0^uCQJ z2=w{&`M4#lC7M+w6SsNBH+X7~-x(*|-!MSwn5_oWnJ*wupg}POWQ!IuZ|v7M{CO}| zV`V0={W{Yl`$f+|L&OZW%DgRk7shvdl}OW8j2Ia8%(~bM>hfhiY$}+4+tPC0PH)}{ zyiO|MGHG06m!y?Ch^Miz&U# zCo||F1zK3UPlZ7_FfBL4r#q{OuNwt}9)N4*Gj&dkapk_U*@?=p>EX(ACTlYVEWF7d?&nKV9f5dLDd_Df9?SapU zY*0t^>+x#NJ=EcJ^`S~W3 zIKzw%Zj4qsl@M|2MS9}misPaB)biIV@+rexE>v;d1}Mf@+88=*W<8pqoc5L<2Rv= zVmm?-zfMP40~Wjk_$(24awciQV@LKP2=tR1*GH1|u?{UvdEW#-nEM!opfAd@2)@Q8 zc;8{`)+h{k;l64#s;ckf+{nE34@9Lv$fPlM=E;M}2JMn|ER`8`$D2}x9+~vrq@&z~ z4Y)MP+(*5CChl$RM6C&Zxl2Vn%5($ZyM1T&!mh8K)pjx3tIxxr%xzBYAfI8Qo0O+R zD|OvMvNN^VQ*A(O^3FGp+mR6|>=V#t6i@(I+!qd1DyXnVw$Vb5y;rA{77%L5G3BU) zPy7c=>o8GglM=smI}JcEaoJJg4_>pnt2AL& zxx!mkOxU?NgqYcY;KEK`gm-60c;X?X0~4kshsd*~S=8OAUw>qgU#+yjXUMq!+Zc1q zbf|U!VS1Uubch*qLM;!18JIm+Q}Ey>bRf{Xv-Fr1oiT1gdGC08?AUpAx>_2)t;qN! zx%+6hMJ|_JAd{okYqQ5A><9yj-%R3*|^u4$A(v;S8d$ozYpJAJXvsDJZX2-72Kxm7>}@fDs7`B zK>D~&+j3`&1f##>W=^6QI!#VVAL?j zO=t*FVcm|ng;y|F7=>D6xT$hj7`)Zskajqu(>M#~Ir&aSHd53OdAN}QHQbOWyH47W}CMeyeQPu zDd~#GlAZ3aNebQS=TV2V^E|NdGH)~ou365-(D;FkdqoSndwR2{l+bT4nuz!P!WMX) z?`suZ)2m?Jc@1NI2cR-3(Ro&oSBFC9x@jsu7e*lldi7rP=%;2*ot*5f;n(GJOwH`k z(igt_NRA!Z4t4lWGo>GEPG`CQB+*|*_QODQ#+!F!(wC^NN=rz4-XO||ew+`X`oEex z^LVJcw~v3NsJl?P(_IavP+608EGaE^3ek{c8(GFOBN}_zer3%*45JWbOO`A#CB{Cs zEW_BBG1>Q>=ZO3Dd;Wa>d|ogA@IB6a&pFq*u5-?OuJ^fkf%o`HRmH=iWh-i~4BMeQ z9d5Kf%z=w&<>|8iCWD=-#$sk+6HLS=xsOIH$jXl{3|eO8NU)m{GK`tLuGZ>wFSVMm zflX}dXg=$dX;Nw6Iup$F37;=#rAI8ISA3}NwAMDzMI!Apz5GkX$DjFtl=uTtI=dN^ z7cN9`M5%VaJ%;;5)1iCpTsX5@S^A+77n-5A%?d9mrSy+_>WFGCS;*UaRChNi z@$fUhVx`6}5<;*1?7GIxd8Og%YmWuRzp$e}k(dT$`Zm~zgS zOV$}_1hnH^69f~X-lzGQMbvde2I%l%O$$b?nlo^8${+0)5K7emG{vAth!Pt8CEu3P zipR7+)UWksU`#1lkI6di@|&H(yX~sLRk1w&v$~nL6xGhL*cz79J3r27LzP)Htt&6Q zAbB@6wn~&Wk+wF)^vkbc`VbCv7FKEDe(3x4x4*clQ(W?KbbrAB@w7{l1MK(QpIp%pG=7tnc}3_ zw&mJw)cJEct}iv19fA()f)40G7leg{oxL669|siEDtda+v@RePPX(|VZ3K2q|4hRA z9cVzEe$1)1Mfb; zd3a)px_9pQHqEs;?)Ei7=ix&O$qnkar}05_ITeyKfp6pMop`gmepN$taBD?BJJ_dq zSB|kF9);xlrWHfxE8U0N-U>+xH8p&HW|@z9SM>Q#Ic_CE&PBsTtEffZL)`Wh_%=U{ z5juV!U&mw#L%S|dUIohWCAgk}f%UewOg)DG)TvWrB2(GFe(5URH~~p>vPjnkXs1pU zERUMFdId8jbZZ+uM9F-qn$Z$BqAbp65Ao+FGC?=LI|`0eR#vXUq&vASS7!&uU^WR8 zV8k?)N)ro+XMtW#Y#mXP+(f z>yb@oTv-Q@DnYOjUCCKrJjinGo{n$%i-lzgkB^Mx5i-cX2KHxM@U4v%OR@WqC%5p$ z9~{=-CO)behsjOXGC%|0(ER7RqBG!)yY{K6#Mt1y zTc;myc2u&j{nM?>wW@WZV)E>+jeqM4yKykwyymdCwGO#bgRX50E~yEh%NPk(>MJ~S z&W5)-MWyYiC-vv}PvMBz76$JNU{>wsZo?iR9$Y1`t}AkcAcTG5$}Nvdbkr%=T<5kN zjI{{gzWpJk%A&4=SJtAs(~U<8bk0$=OcAhq!|ZpmsB36rdI-D4)TBM?9jUZrhpzFu zpTP4juu!dTQ2b1<)qC-+sn9$bgOVT=nn2MGn+gY+m5+>>pnaYoJZnvRSTk3H(~0-R?FzJ1uSaxusR(4m%s4nx<-YCT=NMaQj7SqkeTc;o!3vcJsx#Zzlp#3~5WF2^u%! zTD-EwiRnHKT$`yBUEP@PLWF$1lbZg7R}BXy)EJ;m@4W#|KUGX$Yn>wY&HCaNi`3U_ zYupWMD8!{OL0DOXIB(Z{yCz06Fpv=QQsbU-S6tZ_FSUFt&9D;$i)a$4C1Af6i4v-9 zzsrMp$FCnxmR;(g#+$Lg&-y#*wB+`t)xL@_Q3}K9F*@Ye}s ziX4K{efE0yW>y>Df$C48ILX#-t42Mk1Gb zdJeqRE1hsv?yG&8qDFo5*PE=}if->$l<+|BF`t#=nbsxpdCO;1?zDCbP7C8_k?=xm z5)*xA)xof6E<5bq(a{L5HVf7MCZ5X@p<@T3`%3V=4wktqn>%XpxALmL$Mx-~Gf2I$ zwRq#G|Jbv|LhPk9X2bN{=)Q@C#?yukV0W?-nK=S;96haqMHDZMLQp}?$3KXQUx?Av z(QpFd!h*sh>u$BL<=-MIecP$X?oye)R<%OGK9l7!%C}iJ_MpNXDk}OLouF@2)xZk< zI<#jpNt$gq&Z)S<(G1S(X5VRFEIm@bIV@xpJ{>l?BpVbVLGUy?@F2≠%7XRUofE zaJ9h^Vf+{5khs?fh?u0-HLn#t9lVees^9%8xHK`dvm-yM!woCm{D|N}NRAJ?hYA(- z5{8nT_Y4an0-L|SLJyjfZ0C65B$5!N)2T8}EbJ`GO?O!;2W$>;ulUWpHRW23`iSH; zCsRi6g~q+cuJRh$MY~^l$hU+On%Ukm%TpPDTQ+wcGa!f9pzvWwy_mXQ1s9n99B#}h zp*+(wEv%f;3ZFk2#|}cr(BAak1YZQc5{wZf)Zo(o~P70>Q2>y?4~(L#Zt6i_S@eM_6cIW>Lu%WgM15ctLO z*DYwD91x3xXoNf_dE^644TSyO89+Xf_J=!l{Qegmw1%`wX#F3{st7LS@W`)lGHI)p zVT_Ez3nbWkHEt$;v~PGD`O_-=WCR~V1s)zBEmD{!-u-GE`0Mx^8p!1K!PcQ6 z8j67itjoOfcUkM=*QthT;QYd|m$rEuMJ6wp*j(ZneELN&zUbbQl8hYeHvOKFIj}=@ zp99NX4BnXPy-qzS=+d?3y3VvVUUd~oNVqL)rok-fvWlIKn+|v8xt)mG3~%5puc5|^ zZQ??0e<){cEy?qWiS{_XXj3=`%}(sQi==@%f$J-j{IcolGK>?V`#&^N94jiXFU}I_ zsLh%duc4GRNGf%D-P3v`!=i073mM8eO=0lPqwS5$D}VC$k(4nNZKpR!q=37_;c)Lz zq*xEkdlyoi2PX3esZ{(J@7>hc>QcRc`msZXjeM!qq36E>k2PTV?U!xv9ghmo@QW4ZgON^JjTw%ll9uK1r0c9mGkQ=F-VycDGPjUXpG*=FNi}FlZCD zH?ZD>XP5)M?6fT%-x!*`YkR}cvz3D97)eUviZJR{*2W|cmwI%CZ44~q2GRo#9d_ND zzYxbEoZmcf5+kE->+!<2-N^Mk?gd^^{wnb+UB^%Im(83v2kWDoe-|Qiu+(k;7>oKL zPVJ%h?B}2t`>jrY>8#d<;G80HlwHyzmC6021|+}Rb!4H0;^VfH(;7>X=tEF##$yvPT>4y+1RDXr*`b72Y2Clt1HS$|G=93CXtII$7T~6>49X=2H$fR3$+g z86_p%4Ht{iA#s|h^%Cg#vpqi#krkgmEGV|L1g|p+mT%V>?yWSh4Xn+bJjW%Hqaa?% z;qas=HO4$`M0GOpe9F@3vYV@cQAZ24S|`lt%Ew&#b<1(Zw()@_X6E{N6`Rxx8O>CI zgV4*0{Vvo8LHyd_?Vo}Ei6Z^Rrbu)q!#$gYiW!YdK05L_OD3JQNR@b5X>5!$7Bt|k zeL2;%;&|gxXjOLKa4;!f-fQogvyezGbEKD?r0%?y|GSz-W>gclbFkNO-YHqQaCrLn z9L@6!3K5H?E|G75g$&;GLP9LNs`ksmDS zzU_qrL)p9YCNnPghcngSL_BL8g42UKUBZRD#|&-0-7|Y{#>GC|d^ox-N=Q_uo$8ZZ z-|SQyCy`%dqaLGjy|~G?$I&JWU)X0Urrlfg_kaKG=ciAfctzxmIov=0+B9fGOJ=zc zwv-k9h4VSTc8neB8A&Z&cfH|R+I|I`E9I37Lcg&4woiLq=qp^~jPpQe{VI`MFqbvN6z`Mv&&0qL68yy*@GCkLqpJD_n|WsNvCIs2T6U|K z?N&gC@rf=_=DRdA8%aj`8u^D$E-R~Ms2DfxvgXe1SVItkVgNbg_qEnL>FJ1CT>>+v)Hv*L!D~ z!7)ulf~ChRxyjZphNcQ!BUTu90Zbk|couTiN5d*aWgn3tw+rD}8*iK6( zLhQ(qBcecaJ=J3=EZqy}^xE3mLvUKVzOlsVBq>xk&*0$Tp9=zjzIbve4bQ1a)>>?I z?lf}2i6nM}iJ`j1*Lr6>X&BxY%}KZB!QBEs7DP8AwxLaM2f;ny{u-)-o<9Xf651f8 zBt?SHj!U(~DTa8Wa`bZ&n;!lE$V)Xa{-`{+^irp>F(AxcaCZlDXBVPj0ho|aEPogy zZikSE#*dM!&wEY6$I!(Mf{9NeU+vV@)`|{iiD6Z%3qXI(gIC6qU%!4WN*ljRH}(m` zgnKTO4*H)nZ%UL$ehictahj%5)N`;s->`Y`oTQ}hH0ezxPtWpvn@-K$O97fhNix^y z?G?L7;RVrQ*b7a7YAy~GzP%hB7WR}RbMayYP5L(IiZITnNKK zm|kZ|GmV-fkA3mq(}vY*j<|y(V@Wm@4UHw(r4jrgqlL8ogIfABhqBf5oXQF{{YusP zAFXF-`UylA{z6&GbV#&F#jQwbkxHi5Q-?DZ{^`Zi5|HXkzu!ucitRR1&9cD2Jjx#1 zd6dnun#mn7YW-3PTp*$OVSTCdTzxw%CF|~UqomUOOA*^L3 zpWhP)_c5HMyRdqq(El}1?Zz*L{i}eIHWfBMt6#YM+73t`03zV7=ACTCr?378QVb5f literal 0 HcmV?d00001 diff --git a/degtyarev_mikhail_lab_4/main.py b/degtyarev_mikhail_lab_4/main.py new file mode 100644 index 0000000..f8b991d --- /dev/null +++ b/degtyarev_mikhail_lab_4/main.py @@ -0,0 +1,41 @@ +import pandas as pd +from sklearn.preprocessing import LabelEncoder +from sklearn.manifold import TSNE +from sklearn.cluster import KMeans +import matplotlib.pyplot as plt +import seaborn as sns + +# Загрузка данных +data = pd.read_csv("ds_salaries.csv") + +# Преобразование категориальных переменных в числовые +le = LabelEncoder() +data['company_location'] = le.fit_transform(data['company_location']) +data['company_size'] = le.fit_transform(data['company_size']) + +# Выбор нужных признаков +features = ['company_location', 'company_size'] + +# Применение t-SNE для уменьшения размерности +tsne = TSNE(n_components=2, random_state=42) +data_tsne = tsne.fit_transform(data[features]) + +# Кластеризация данных +kmeans = KMeans(n_clusters=3, random_state=42) +labels = kmeans.fit_predict(data_tsne) + +# Создание датафрейма с новыми координатами и метками кластеров +data_tsne_df = pd.DataFrame(data=data_tsne, columns=['Dimension 1', 'Dimension 2']) +data_tsne_df['Cluster'] = labels + +# Добавление номера кластера в исходные данные +data['Cluster'] = labels + +# Визуализация +plt.figure(figsize=(10, 6)) +sns.scatterplot(x='Dimension 1', y='Dimension 2', hue='Cluster', data=data_tsne_df, palette='viridis', s=50) +plt.title('t-SNE Clustering of Companies') +plt.show() + +# Вывод номера кластера в исходных данных +print(data[['company_location', 'company_size', 'Cluster']])