zhukova_alina_lab_6 is ready
This commit is contained in:
parent
a8c58683dd
commit
2fcd62afa8
20059
zhukova_alina_lab_6/Data_chess_games.csv
Normal file
20059
zhukova_alina_lab_6/Data_chess_games.csv
Normal file
File diff suppressed because it is too large
Load Diff
205
zhukova_alina_lab_6/flask-server.py
Normal file
205
zhukova_alina_lab_6/flask-server.py
Normal file
@ -0,0 +1,205 @@
|
|||||||
|
import pandas
|
||||||
|
from flask import Flask, render_template
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
from numpy import vectorize
|
||||||
|
from sklearn.metrics import mean_absolute_error, accuracy_score
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.neural_network import MLPRegressor
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@app.route("/")
|
||||||
|
def home():
|
||||||
|
return "<html>" \
|
||||||
|
"<h1>Жукова Алина ПИбд-41</h1>" \
|
||||||
|
"<h1>Лабораторная работа №6</h1>" \
|
||||||
|
"<table>" \
|
||||||
|
"<td>" \
|
||||||
|
"<form Action='http://127.0.0.1:5000/k4_1_task_6' Method=get>" \
|
||||||
|
"<input type=submit value='Нейронная сеть'>" \
|
||||||
|
"</form>" \
|
||||||
|
"</td>" \
|
||||||
|
"</table>" \
|
||||||
|
"</html>"
|
||||||
|
|
||||||
|
# Нейронная сеть
|
||||||
|
# 10 вариант - MLPRegressor
|
||||||
|
@app.route("/k4_1_task_6", methods=['GET'])
|
||||||
|
def k4_1_task_6():
|
||||||
|
data = pandas.read_csv('Data_chess_games.csv')
|
||||||
|
data = data.loc[data['created_at'] - data['last_move_at'] != 0]
|
||||||
|
data = data.drop_duplicates()
|
||||||
|
data = data.sample(n=18000, replace=True, random_state=1)
|
||||||
|
|
||||||
|
# отбор нужных столбцов
|
||||||
|
corr = data[['white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'winner']]
|
||||||
|
def SplitPr(stroke):
|
||||||
|
return len(stroke.split(" "))
|
||||||
|
corr['len'] = corr['moves'].apply(SplitPr)
|
||||||
|
corr = corr.loc[corr['len'] >= 10]
|
||||||
|
|
||||||
|
number_element = 0
|
||||||
|
def SelectElemToStolb(elem):
|
||||||
|
return elem.split(" ")[number_element]
|
||||||
|
|
||||||
|
def ScoreXod(elem):
|
||||||
|
if(elem == "O-O" or elem == "O-O-O"):
|
||||||
|
return 50
|
||||||
|
if(elem.__contains__("x")):
|
||||||
|
return 20
|
||||||
|
if (elem.__contains__("+")):
|
||||||
|
return 50
|
||||||
|
return 10
|
||||||
|
|
||||||
|
def EcoToScore(elem):
|
||||||
|
score_eco = 0
|
||||||
|
if(str(elem).startswith("A")):
|
||||||
|
score_eco = 100
|
||||||
|
if (str(elem).startswith("B")):
|
||||||
|
score_eco = 200
|
||||||
|
if (str(elem).startswith("C")):
|
||||||
|
score_eco = 300
|
||||||
|
if (str(elem).startswith("D")):
|
||||||
|
score_eco = 400
|
||||||
|
if (str(elem).startswith("E")):
|
||||||
|
score_eco = 500
|
||||||
|
score_eco += int(str(elem)[1:])
|
||||||
|
return score_eco
|
||||||
|
|
||||||
|
# 0 - white || 1 - black
|
||||||
|
gamer_ind = 0
|
||||||
|
def ScoreAllXods(elem):
|
||||||
|
score = 0
|
||||||
|
xods = elem.split(" ")
|
||||||
|
ind_temp = 0
|
||||||
|
for xod in xods:
|
||||||
|
if(ind_temp % 2 == gamer_ind % 2):
|
||||||
|
score += ScoreXod(xod)
|
||||||
|
ind_temp += 1
|
||||||
|
|
||||||
|
return score
|
||||||
|
|
||||||
|
corr['score_eco'] = corr['opening_eco'].apply(EcoToScore)
|
||||||
|
|
||||||
|
corr['w_score_all'] = corr['moves'].apply(ScoreAllXods)
|
||||||
|
gamer_ind = 1
|
||||||
|
corr['b_score_all'] = corr['moves'].apply(ScoreAllXods)
|
||||||
|
|
||||||
|
def WinnerSelect(elem):
|
||||||
|
if(elem == "white"):
|
||||||
|
return 1
|
||||||
|
if(elem == "black"):
|
||||||
|
return -1
|
||||||
|
return 0
|
||||||
|
corr['winner'] = corr['winner'].apply(WinnerSelect)
|
||||||
|
|
||||||
|
y = corr[['winner']]
|
||||||
|
|
||||||
|
|
||||||
|
# Нормирование к 1
|
||||||
|
max_zn = corr['white_rating'].max()
|
||||||
|
min_zn = corr['white_rating'].min()
|
||||||
|
def normirovanie(elem):
|
||||||
|
return ((elem - min_zn) / (max_zn - min_zn))
|
||||||
|
corr['white_rating'] = corr['white_rating'].apply(normirovanie)
|
||||||
|
|
||||||
|
max_zn = corr['black_rating'].max()
|
||||||
|
min_zn = corr['black_rating'].min()
|
||||||
|
corr['black_rating'] = corr['black_rating'].apply(normirovanie)
|
||||||
|
|
||||||
|
corr_st = corr
|
||||||
|
corr = corr[['white_rating', 'black_rating', 'b_score_all', 'w_score_all', 'score_eco']]
|
||||||
|
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(corr, y, test_size=.01, random_state=42)
|
||||||
|
|
||||||
|
iter_count = 200
|
||||||
|
|
||||||
|
mlpRegressor = MLPRegressor(
|
||||||
|
hidden_layer_sizes=(50, 50), # слои и нейроны
|
||||||
|
activation='relu', # функция активации
|
||||||
|
solver='adam',
|
||||||
|
alpha=0.0001, # регуляризация
|
||||||
|
max_iter=iter_count, # макс итераций
|
||||||
|
learning_rate='constant',
|
||||||
|
batch_size=32, # размер мини партии
|
||||||
|
early_stopping=True, # для предотвращения переобучения
|
||||||
|
validation_fraction=0.2 # 20% данных для проверки
|
||||||
|
)
|
||||||
|
|
||||||
|
mlpRegressor.fit(X_train, y_train)
|
||||||
|
prediction = mlpRegressor.predict(X_test)
|
||||||
|
accuracy = str(mlpRegressor.score(X_test, y_test))
|
||||||
|
|
||||||
|
def FunkPorog(elem):
|
||||||
|
if(elem >= 0.5):
|
||||||
|
return 1
|
||||||
|
if(elem > -0.5):
|
||||||
|
return 0
|
||||||
|
if(elem <= -0.5):
|
||||||
|
return -1
|
||||||
|
prediction = mlpRegressor.predict(X_test)
|
||||||
|
n_predict_vect = vectorize(FunkPorog)
|
||||||
|
|
||||||
|
# Средняя ошибка
|
||||||
|
accuracy_mean_abs_error = mean_absolute_error(prediction, y_test)
|
||||||
|
|
||||||
|
# Предсказание исхода партии, в целых числах
|
||||||
|
predict_acc_score = n_predict_vect(prediction)
|
||||||
|
accuracy_acc_score = accuracy_score(predict_acc_score, y_test)
|
||||||
|
|
||||||
|
|
||||||
|
white_win = corr_st.loc[corr_st['winner'] == 1]
|
||||||
|
white_score = (white_win['w_score_all'])
|
||||||
|
black_score = (white_win['b_score_all'])
|
||||||
|
white_win_x = white_score - black_score + white_win['score_eco']
|
||||||
|
white_win_y = white_win['winner'] + (white_win['black_rating'] - white_win['white_rating'])
|
||||||
|
|
||||||
|
black_win = corr_st.loc[corr_st['winner'] == -1]
|
||||||
|
white_score = (black_win['w_score_all'])
|
||||||
|
black_score = (black_win['b_score_all'])
|
||||||
|
black_win_x = white_score - black_score + black_win['score_eco']
|
||||||
|
black_win_y = black_win['winner'] + (black_win['black_rating'] - black_win['white_rating'])
|
||||||
|
|
||||||
|
no_win = corr_st.loc[corr_st['winner'] == 0]
|
||||||
|
|
||||||
|
white_score = (no_win['w_score_all'])
|
||||||
|
black_score = (no_win['b_score_all'])
|
||||||
|
no_win_x = white_score - black_score + no_win['score_eco']
|
||||||
|
no_win_y = no_win['winner'] + (no_win['black_rating'] - no_win['white_rating'])
|
||||||
|
|
||||||
|
white_win = white_win[['white_rating', 'black_rating', 'b_score_all', 'w_score_all', 'score_eco']]
|
||||||
|
black_win = black_win[['white_rating', 'black_rating', 'b_score_all', 'w_score_all', 'score_eco']]
|
||||||
|
no_win = no_win[['white_rating', 'black_rating', 'b_score_all', 'w_score_all', 'score_eco']]
|
||||||
|
|
||||||
|
plt.subplot(1, 2, 1)
|
||||||
|
plt.scatter(white_win_x, (corr_st.loc[corr_st['winner'] == 1])['winner'], alpha=0.6, s=25, c='red')
|
||||||
|
plt.scatter(black_win_x, (corr_st.loc[corr_st['winner'] == -1])['winner'], alpha=0.6, s=25, c='blue')
|
||||||
|
plt.scatter(no_win_x, (corr_st.loc[corr_st['winner'] == 0])['winner'], alpha=0.6, s=25, c='green')
|
||||||
|
plt.scatter(white_win_x, white_win_y, alpha=0.2, s=25, c='pink')
|
||||||
|
plt.scatter(black_win_x, black_win_y, alpha=0.2, s=25, c='cyan')
|
||||||
|
plt.scatter(no_win_x, no_win_y, alpha=0.2, s=25, c='yellow')
|
||||||
|
|
||||||
|
plt.savefig('static\k4_1_6_neiro_net.png')
|
||||||
|
|
||||||
|
# Данные для статистики (100, 200, 400, 600, 800, 1000 итераций)
|
||||||
|
# 50,50 нейронов в слоях
|
||||||
|
# Отклонение по абсолютной ошибке 0.776, 0.773, 0.822, 0.761, 0.750, 0.883
|
||||||
|
# Отклонение по исходу в целых числах 0.222, 0.320, 0.188, 0.314, 0.331, 0.188
|
||||||
|
# 50,50,50 нейронов в слоях
|
||||||
|
# Отклонение по абсолютной ошибке 0.759, 0.812, 0.766, 0.751, 0.757, 0.748
|
||||||
|
# Отклонение по исходу в целых числах 0.354, 0.280, 0.228, 0.331, 0.217, 0.331
|
||||||
|
|
||||||
|
return "<html>" \
|
||||||
|
"<h1>Нейронная сеть</h1>" \
|
||||||
|
"<h2>Вариант 10. Задание 6 - MLPRegressor</h2>" \
|
||||||
|
"<h2> Точность модели на " + str(iter_count) + " итераций:</h2>" \
|
||||||
|
"<h2> Отклонение по абсолютной ошибке: " + str(accuracy_mean_abs_error) + "</h2>" \
|
||||||
|
"<h2> Отклонение по исходу партии в целых числах: " + str(accuracy_acc_score) + "</h2>" \
|
||||||
|
"<div align='center'>" + render_template(
|
||||||
|
'4_1_l6_figure1.html') + "</div>" \
|
||||||
|
"</html>"
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
app.run(debug=True)
|
BIN
zhukova_alina_lab_6/img_screen_1.png
Normal file
BIN
zhukova_alina_lab_6/img_screen_1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 58 KiB |
54
zhukova_alina_lab_6/readme.md
Normal file
54
zhukova_alina_lab_6/readme.md
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
## Задание
|
||||||
|
Использовать нейронную сеть по варианту для выбранных данных,
|
||||||
|
самостоятельно сформулировав задачу.
|
||||||
|
Интерпретировать результаты и оценить, насколько хорошо она подходит для
|
||||||
|
решения сформулированной вами задачи
|
||||||
|
|
||||||
|
Вариант №10
|
||||||
|
|
||||||
|
## Используемые технологии
|
||||||
|
В лабораторной были использованы библиотеки:
|
||||||
|
+ pandas - позволяет работать с наборами данных
|
||||||
|
+ matplotlib - используется для создания графиков
|
||||||
|
+ sklearn - используется для работы с моделями и методами машинного обучения
|
||||||
|
+ numpy - позволяет работать с массивами и матрицами
|
||||||
|
+ Flask - предоставляет способ быстрого создания веб-страниц для визуализации работы приложения
|
||||||
|
|
||||||
|
## Используемые компоненты
|
||||||
|
+ MLPRegressor - многослойный перцептрон, который обучается с
|
||||||
|
использованием обратного распространения без функции активации в выходном слое
|
||||||
|
+ accuracy_score - метрика измерения точности для определения качества регресии
|
||||||
|
+ mean_absolute_error - метрика измерения точности регресии через среднюю абсолютную ошибку
|
||||||
|
|
||||||
|
## Как запустить
|
||||||
|
Запустить файл flask-server, который поднимет локальный сервер
|
||||||
|
и позволит обратиться к программе через браузер по ссылке [http://127.0.0.1:5000/](http://127.0.0.1:5000/)
|
||||||
|
|
||||||
|
## Что делает программа
|
||||||
|
Берет все записи из датасета (датасет Chess Game Dataset)
|
||||||
|
[https://www.kaggle.com/datasets/datasnaek/chess](https://www.kaggle.com/datasets/datasnaek/chess)),
|
||||||
|
Преобразует данные нечисловых столбцов в числовые значения, осуществляет нормализацию и взвешивание параметров.
|
||||||
|
Строит регрессионную зависимость используя нейронную сеть MLPRegressor,
|
||||||
|
Оценивает качество полученной модели с помощью метрик accuracy_score и mean_absolute_error
|
||||||
|
|
||||||
|
## Анализ и скриншоты работы программы
|
||||||
|
|
||||||
|
С помощью регрессии планировалось получить предсказание об исходе партий,
|
||||||
|
а именно вероятность победы того или иного игрока.
|
||||||
|
Предсказание строиться исходя из ходов в шахматной записи,
|
||||||
|
каждому из которого присваивается своя ценность, а также учитывается рейтинг игроков
|
||||||
|
и открывающая комбинация ходов.
|
||||||
|
|
||||||
|
![img.png](img_screen_1.png)
|
||||||
|
|
||||||
|
Судить о модели можно и по средней абсолютной ошибке, но намного проще воспринимать
|
||||||
|
ее по точности данных предсказаний. Отклонение по исходу партии представляет
|
||||||
|
точность модели как процент неверных ответов об исходе партии.
|
||||||
|
Так как регрессионная модель выдает результаты от -1 до +1, а нам нужно получить
|
||||||
|
исход игры, значения из регресии с помощью специальной фунции приводятся к одному
|
||||||
|
числу из -1, 0, +1, где 0 означает ничью, +1 победу игрока играющего белыми,
|
||||||
|
-1 победу игрока играющего черными.
|
||||||
|
|
||||||
|
При варьировании параметров структуры модели (50,50 нейронов и 50,50,50 нейронов),
|
||||||
|
и количества итераций (от 200 до 1000) была найдена наилучшая модель,
|
||||||
|
которая дает точность в 78%, и отклонение по абсолютной ошибке 0.81
|
BIN
zhukova_alina_lab_6/static/k4_1_6_neiro_net.png
Normal file
BIN
zhukova_alina_lab_6/static/k4_1_6_neiro_net.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 36 KiB |
10
zhukova_alina_lab_6/templates/4_1_l6_figure1.html
Normal file
10
zhukova_alina_lab_6/templates/4_1_l6_figure1.html
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<meta charset="UTF-8">
|
||||||
|
<title>Title</title>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<img src="{{url_for('static', filename='k4_1_6_neiro_net.png')}}" align="middle"/>
|
||||||
|
</body>
|
||||||
|
</html>
|
Loading…
Reference in New Issue
Block a user