commit 1
This commit is contained in:
parent
4498fb5531
commit
2cfa4971a6
84
istyukov_timofey_lab_6/lab6.py
Normal file
84
istyukov_timofey_lab_6/lab6.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""
|
||||
Использовать нейронную сеть по варианту для ваших данных по варианту, самостоятельно сформулировав задачу.
|
||||
Интерпретировать результаты и оценить, насколько хорошо она подходит для решения сформулированной вами задачи.
|
||||
"""
|
||||
|
||||
"""
|
||||
Задача, решаемая нейронной сетью:
|
||||
Регрессия: Предсказание популярности нового музыкального трека на основе его определённых характеристик.
|
||||
"""
|
||||
|
||||
# 12 вариант
|
||||
# Набор данных по курсовой: "Prediction of music genre"
|
||||
# Модель мейронной сети: MLPRegressor
|
||||
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn import metrics
|
||||
from sklearn.neural_network import MLPRegressor
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
|
||||
DATASET_FILE = 'music_genre.csv'
|
||||
|
||||
|
||||
def main():
|
||||
df = open_dataset(DATASET_FILE) # берём полный набор данных
|
||||
print("\033[92m[----------> Набор данных <----------]\033[00m")
|
||||
print(df)
|
||||
|
||||
# Перевод ладов (минор/мажор) в числовые признаки
|
||||
df_music = df.copy()
|
||||
df_music['mode'] = df_music['mode'].apply(lambda x: 1 if x == 'Major' else 0)
|
||||
|
||||
X = df_music.drop(columns=['popularity']) # характеристики музыкального трека
|
||||
y = df_music['popularity'] # уровень популярности
|
||||
|
||||
# Разделение датасета на тренировочные (99%) и тестовые данные (1%)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01)
|
||||
|
||||
model = MLPRegressor(
|
||||
# несколько размеров слоёв и узлов
|
||||
hidden_layer_sizes=(50, 50, 50, 50,),
|
||||
# функция активации (relu, tanh, identity)
|
||||
activation='relu',
|
||||
max_iter=2000
|
||||
)
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
# Предсказание на тестовых данных
|
||||
y_pred = model.predict(X_test)
|
||||
|
||||
print("\033[92m[----------> Оценка модели <----------]\033[00m")
|
||||
print("Коэффициент детерминации = ",
|
||||
round(metrics.r2_score(y_test, y_pred), 3))
|
||||
print("Потери регрессии среднеквадратичной логарифмической ошибки = ",
|
||||
round(metrics.mean_squared_log_error(y_test, y_pred), 3))
|
||||
|
||||
# График для наглядности
|
||||
sns.regplot(x=y_test, y=y_pred, scatter_kws={'s': 10}, line_kws={'color': 'red'})
|
||||
plt.xlabel('Реальность')
|
||||
plt.ylabel('Предсказание')
|
||||
plt.title('MLPRegressor на примере популярности треков')
|
||||
plt.savefig("1_plot_result")
|
||||
plt.show()
|
||||
|
||||
|
||||
# Функция считывания и очищения csv-файла
|
||||
def open_dataset(csv_file):
|
||||
# открываем файл с указанием знака-отделителя
|
||||
df = pd.read_csv(csv_file, delimiter=',')
|
||||
# выбираем необходимые признаки
|
||||
df = df[['mode', 'tempo', 'instrumentalness', 'acousticness', 'speechiness', 'danceability',
|
||||
'energy', 'liveness', 'valence', 'loudness', 'popularity']]
|
||||
# очищаем набор данных от пустых и неподходящих значений
|
||||
df = df[df['tempo'] != '?']
|
||||
df = df.dropna()
|
||||
return df
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
50006
istyukov_timofey_lab_6/music_genre.csv
Normal file
50006
istyukov_timofey_lab_6/music_genre.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user