IIS_2023_1/tepechin_kirill_lab_3/README.md

62 lines
4.8 KiB
Markdown
Raw Normal View History

2023-11-29 23:09:58 +04:00
## Лабораторная работа №3, ПИбд-42 Тепечин Кирилл
### Датасет:
#### Ссылка:
[Smoking and Drinking Dataset with body signal](https://www.kaggle.com/datasets/sooyoungher/smoking-drinking-dataset/data)
#### Подробности датасета
| Столбец | Пояснение |
|------------------|:-----------------------------------------------------------------:|
| sex | Пол(мужской, женский) |
| age | Возраст(округлён) |
| height | Рост(округлён) [см] |
| weight | [кг] |
| sight_left | зрение (левый) |
| sight_left | зрение (правый) |
| hear_left | слух (левое): 1 (нормальное), 2 (ненормальное) |
| hear_right | слух (правое): 1 (нормальное), 2 (ненормальное) |
| SBP | Систолическое артериальное давление [мм рт. ст.] |
| DBP | Диастолическое артериальное давление [мм рт. ст.] |
| BLDS | глюкоза в крови натощак [мг/дл] |
| tot_chole | общий холестерин [мг/дл] |
| HDL_chole | Холестерин ЛПВП [мг/дл] |
| LDL_chole | Холестерин ЛПНП [мг/дл] |
| triglyceride | триглицерид [мг/дл] |
| hemoglobin | гемоглобин [г/дл] |
| urine_protein | белок в моче, 1(-), 2(+/-), 3(+1), 4(+2), 5(+3), 6(+4) |
| serum_creatinine | креатинин сыворотки (крови) [мг/дл] |
| SGOT_AST | глутамат-оксалоацетат-трансаминаза / аспартат-трансаминаза [МЕ/л] |
| SGOT_ALT | аланиновая трансаминаза [МЕ/л] |
| gamma_GTP | γ-глутамилтранспептидаза [МЕ/л] |
| SMK_stat_type_cd | Степень курения: 1 (никогда), 2 (бросил), 3 (курю) |
| DRK_YN | Пьющий или нет |
### Как запустить лабораторную работу:
Для запуска лабораторной работы необходимо запустить файл lab3.py
### Используемые технологии:
* Python 3.12
* pandas
* scikit-learn
### Что делает лабораторная работа:
Эта лабораторная программа загружает данные из csv файла, подготавливает их для обучения модели классификации дерева решений, обучает модель, выполняет прогнозы и оценивает ее точность, а затем выводит важность признаков.
Целевой признак - SMK_stat_type_cd - степень курения
### Предварительная обработка данных:
Изначально датасет имеет несколько категориальных признаков : *sex* , *DRK_YN*
Преобразуем их в фиктивные переменные используя
````python
data = pd.get_dummies(data, columns=['sex', 'DRK_YN'], drop_first=True)
````
### Результат:
![Результат](results.png)
### Вывод:
На основе этих результатов можно сделать выводы о том, что половой признак (*sex_Male*) оказывается наиболее влиятельным для классификации степени курения. Также можно выделить наименее важные признаки, это слух (*hear_left*, *hear_right*).
Точность модели составляет примерно 62%, говорит о том, что она классифицирует данные с относительно средней точностью.