IIS_2023_1/faskhutdinov_idris_lab_5/main.py

55 lines
2.2 KiB
Python
Raw Normal View History

2024-01-14 20:56:07 +04:00
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
def main():
# Чтение данных из датасета
data = pd.read_csv('Clean Data_pakwheels.csv')
# Выбор переменных для модели
features = ['Registration Status', 'Model Year', 'Mileage']
# Выбор лишь части значений для оптимизации работы программы
data = data.sample(frac=.1)
# Отбор нужных столбцов
df = data[features]
# Преобразование строковых значений о регистрации авто в числовые
labelencoder = LabelEncoder()
df['Registration Status'] = labelencoder.fit_transform(df['Registration Status'])
# Разделение на признаки и целевую переменную, представленную как Mileage
X = df.drop('Mileage', axis=1)
y = df['Mileage']
# Разделение данных на тренировочный и тестовый наборы
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=0)
# Создание и обучение логистической регрессии
model = LogisticRegression()
model.fit(X_train, y_train)
# Предсказание на тестовом наборе
y_pred = model.predict(X_test)
# Оценка качества модели
accuracy = accuracy_score(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
print(f'Точность: {accuracy}')
print(f'Классификация:\n{class_report}')
# Визуализация результатов
plt.scatter(X_test['Registration Status'], y_test, color='red', label='Actual')
plt.scatter(X_test['Registration Status'], y_pred, color='green', label='Predicted', marker='x')
plt.xlabel('Registration Status')
plt.ylabel('Mileage')
plt.legend()
plt.savefig(f"image.png")
plt.show()
main()