IIS_2023_1/faskhutdinov_idris_lab_5/Readme.md

45 lines
2.9 KiB
Markdown
Raw Normal View History

2024-01-14 20:56:07 +04:00
# Лабораторная работа №5. Регрессия
## 2 вариант(27 % 5 = 2)
### Задание:
Использовать регрессию по варианту для данных из таблицы 1 по
варианту (таблица 10), самостоятельно сформулировав задачу. Оценить,
насколько хорошо она подходит для решения сформулированной вами задачи.
Используемый метод: Логистическая регрессия
В моем случае данными является датасет о продаже автомобилей. В датасете представлены следующие столбцы:
* id
* Company Name
* Model Name
* Price
* Model Year
* Location
* Mileage
* Engine Type
* Engine Capacity
* Color
* Assembly
* Body Type
* Transmission Type
* Registration Status
### Как запустить лабораторную
1. Запустить файл main.py
### Используемые технологии
1. Библиотека matplotlib
2. Библиотека scikit-learn
3. Библиотека pandas
3. Python
4. IDE PyCharm
### Описание лабораторной работы
Программа выполняет решение задачи регрессии методом логистической регрессии, используя для своей работы признаки "Registration Status", 'Model Year', 'Mileage'. Предсказывается вероятность регистрации автомобиля на основе данных о его пробеге и годе выпуска.
Для работы программы выбирается часть данных(Ввиду того, что работы программы на полном объеме данных требует больших вычислительных мощностей), затем строковые значения преобразуются в числовые. Данные разделяются на тестовый и тренировочный наборы,
строится модель логистической регрессии, после чего оценивается её качество.
После чего строится график, который показывается на экране, а так же сохраняется в папке проекта.
Точность: 0.04852728150651859
Скриншот работы программы представлен в папке проекта.
### Результат
Модель логистической регрессии показала весьма низкие результаты, в связи с этим можно сделать вывод ,что она не подходит для решения сформулированной задачи.