46 lines
2.1 KiB
Python
46 lines
2.1 KiB
Python
|
import numpy as np
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
from sklearn.datasets import make_moons
|
|||
|
from sklearn.model_selection import train_test_split
|
|||
|
from sklearn.linear_model import Perceptron
|
|||
|
from sklearn.neural_network import MLPClassifier
|
|||
|
from sklearn.metrics import accuracy_score
|
|||
|
|
|||
|
# Генерируем данные
|
|||
|
rs = 42
|
|||
|
X, y = make_moons(n_samples=1000, noise=0.3, random_state=rs)
|
|||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rs)
|
|||
|
def train_and_evaluate_model(model, X_train, y_train, X_test, y_test):
|
|||
|
model.fit(X_train, y_train)
|
|||
|
y_pred = model.predict(X_test)
|
|||
|
accuracy = accuracy_score(y_test, y_pred)
|
|||
|
return accuracy
|
|||
|
|
|||
|
# Построение моделей
|
|||
|
perceptron_model = Perceptron(random_state=rs)
|
|||
|
perceptron_accuracy = train_and_evaluate_model(perceptron_model, X_train, y_train, X_test, y_test)
|
|||
|
|
|||
|
mlp_model_10_neurons = MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)
|
|||
|
mlp_10_neurons_accuracy = train_and_evaluate_model(mlp_model_10_neurons, X_train, y_train, X_test, y_test)
|
|||
|
|
|||
|
mlp_model_100_neurons = MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs)
|
|||
|
mlp_100_neurons_accuracy = train_and_evaluate_model(mlp_model_100_neurons, X_train, y_train, X_test, y_test)
|
|||
|
|
|||
|
# Построение графиков
|
|||
|
plt.figure(figsize=(12, 4))
|
|||
|
|
|||
|
plt.subplot(131)
|
|||
|
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.')
|
|||
|
plt.title("Персептрон\nТочность: {:.2f}%".format(perceptron_accuracy * 100))
|
|||
|
|
|||
|
plt.subplot(132)
|
|||
|
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.')
|
|||
|
plt.title("Многослойный персептрон\nс 10-ю нейронами в скрытом слое\nТочность: {:.2f}%".format(mlp_10_neurons_accuracy * 100))
|
|||
|
|
|||
|
plt.subplot(133)
|
|||
|
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.')
|
|||
|
plt.title("Многослойный персептрон\nс 100-а нейронами в скрытом слое\nТочность: {:.2f}%".format(mlp_100_neurons_accuracy * 100))
|
|||
|
|
|||
|
plt.tight_layout()
|
|||
|
plt.savefig('models.png')
|
|||
|
plt.show()
|