77 lines
2.8 KiB
Python
77 lines
2.8 KiB
Python
|
from sklearn.utils import check_X_y, check_random_state
|
||
|
from sklearn.linear_model import Lasso
|
||
|
from scipy.sparse import issparse
|
||
|
from scipy import sparse
|
||
|
|
||
|
|
||
|
def _rescale_data(x, weights):
|
||
|
if issparse(x):
|
||
|
size = weights.shape[0]
|
||
|
weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size))
|
||
|
x_rescaled = x * weight_dia
|
||
|
else:
|
||
|
x_rescaled = x * (1 - weights)
|
||
|
|
||
|
return x_rescaled
|
||
|
|
||
|
|
||
|
class RandomizedLasso(Lasso):
|
||
|
"""
|
||
|
Randomized version of scikit-learns Lasso class.
|
||
|
|
||
|
Randomized LASSO is a generalization of the LASSO. The LASSO penalises
|
||
|
the absolute value of the coefficients with a penalty term proportional
|
||
|
to `alpha`, but the randomized LASSO changes the penalty to a randomly
|
||
|
chosen value in the range `[alpha, alpha/weakness]`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
weakness : float
|
||
|
Weakness value for randomized LASSO. Must be in (0, 1].
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
sklearn.linear_model.LogisticRegression : learns logistic regression models
|
||
|
using the same algorithm.
|
||
|
"""
|
||
|
def __init__(self, weakness=0.5, alpha=1.0, fit_intercept=True,
|
||
|
precompute=False, copy_X=True, max_iter=1000,
|
||
|
tol=1e-4, warm_start=False, positive=False,
|
||
|
random_state=None, selection='cyclic'):
|
||
|
self.weakness = weakness
|
||
|
super(RandomizedLasso, self).__init__(
|
||
|
alpha=alpha, fit_intercept=fit_intercept, precompute=precompute, copy_X=copy_X,
|
||
|
max_iter=max_iter, tol=tol, warm_start=warm_start,
|
||
|
positive=positive, random_state=random_state,
|
||
|
selection=selection)
|
||
|
|
||
|
def fit(self, X, y):
|
||
|
"""Fit the model according to the given training data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||
|
The training input samples.
|
||
|
|
||
|
y : array-like, shape = [n_samples]
|
||
|
The target values.
|
||
|
"""
|
||
|
if not isinstance(self.weakness, float) or not (0.0 < self.weakness <= 1.0):
|
||
|
raise ValueError('weakness should be a float in (0, 1], got %s' % self.weakness)
|
||
|
|
||
|
X, y = check_X_y(X, y, accept_sparse=True)
|
||
|
|
||
|
n_features = X.shape[1]
|
||
|
weakness = 1. - self.weakness
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
weights = weakness * random_state.randint(0, 1 + 1, size=(n_features,))
|
||
|
|
||
|
# TODO: I am afraid this will do double normalization if set to true
|
||
|
#X, y, _, _ = _preprocess_data(X, y, self.fit_intercept, normalize=self.normalize, copy=False,
|
||
|
# sample_weight=None, return_mean=False)
|
||
|
|
||
|
# TODO: Check if this is a problem if it happens before standardization
|
||
|
X_rescaled = _rescale_data(X, weights)
|
||
|
return super(RandomizedLasso, self).fit(X_rescaled, y)
|