54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
|
import numpy as np
|
||
|
import pandas as pb
|
||
|
import matplotlib.pyplot as plt
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.linear_model import LinearRegression, Perceptron
|
||
|
from sklearn.neural_network import MLPClassifier, MLPRegressor
|
||
|
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler
|
||
|
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
|
||
|
from scipy.cluster.hierarchy import dendrogram, linkage
|
||
|
|
||
|
df = pb.read_csv("StudentsPerformance.csv", sep=",", encoding="windows-1251")
|
||
|
df1 = df
|
||
|
print("Данные без подготовки:")
|
||
|
with pb.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000):
|
||
|
print(df[:5])
|
||
|
|
||
|
def prepareStringData(columnName):
|
||
|
uniq = df[columnName].unique()
|
||
|
mp = {}
|
||
|
for i in uniq:
|
||
|
mp[i] = len(mp)
|
||
|
df[columnName] = df[columnName].map(mp)
|
||
|
|
||
|
|
||
|
print()
|
||
|
print("Данные после подготовки:")
|
||
|
prepareStringData("gender")
|
||
|
prepareStringData("race/ethnicity")
|
||
|
prepareStringData("parental level of education")
|
||
|
prepareStringData("lunch")
|
||
|
prepareStringData("test preparation course")
|
||
|
with pb.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000):
|
||
|
print(df[:5])
|
||
|
|
||
|
|
||
|
X = df[:15]
|
||
|
X = X[["math score", "reading score", "writing score"]].values
|
||
|
labelList = []
|
||
|
for i in X:
|
||
|
st = ""
|
||
|
for j in i:
|
||
|
st += str(j)
|
||
|
st += ","
|
||
|
st = "(" + st[:len(st) - 1] + ")"
|
||
|
labelList.append(st)
|
||
|
linked = linkage(X, 'single')
|
||
|
|
||
|
plt.figure(figsize=(10, 7))
|
||
|
dendrogram(linked,
|
||
|
orientation='top',
|
||
|
labels=labelList,
|
||
|
distance_sort='descending',
|
||
|
show_leaf_counts=True)
|
||
|
plt.show()
|