56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
|
import numpy as np
|
||
|
from sklearn.preprocessing import MinMaxScaler
|
||
|
from operator import itemgetter
|
||
|
from models import create_model
|
||
|
from sklearn.metrics import mean_absolute_percentage_error
|
||
|
|
||
|
|
||
|
def get_ranks(linear, names):
|
||
|
ranks = dict()
|
||
|
ranks['Linear'] = sort_by_desc(rank_to_dict(linear.coef_, names))
|
||
|
return ranks
|
||
|
|
||
|
|
||
|
def sort_by_desc(dictionary):
|
||
|
return dict(sorted(dictionary.items(), key=itemgetter(1), reverse=True))
|
||
|
|
||
|
|
||
|
def calculate_mean_and_sort_list(ranks):
|
||
|
mean = {}
|
||
|
for key, value in ranks.items():
|
||
|
print(key, value)
|
||
|
for item in value.items():
|
||
|
if item[0] not in mean:
|
||
|
mean[item[0]] = 0
|
||
|
mean[item[0]] += item[1]
|
||
|
for key, value in mean.items():
|
||
|
res = value / len(ranks)
|
||
|
mean[key] = round(res, 4)
|
||
|
return sort_by_desc(mean)
|
||
|
|
||
|
|
||
|
def rank_to_dict(ranks, names):
|
||
|
ranks = np.abs(ranks)
|
||
|
minmax = MinMaxScaler()
|
||
|
ranks = minmax.fit_transform(np.array(ranks).reshape(len(names), 1)).ravel()
|
||
|
ranks = map(lambda x: round(x, 4), ranks)
|
||
|
return dict(zip(names, ranks))
|
||
|
|
||
|
|
||
|
# Mean absolute percentage error regression loss
|
||
|
def calculate_mape(x_train, x_test, y_train, y_test):
|
||
|
lasso = create_model(x_train, y_train)
|
||
|
lasso_predict = lasso.predict(x_test)
|
||
|
|
||
|
# Convert to lists to calculate MAPE
|
||
|
y_test = list(y_test)
|
||
|
lasso_predict = list(lasso_predict)
|
||
|
|
||
|
# y_test_correct = []
|
||
|
#
|
||
|
# for i in y_test:
|
||
|
# if not i == 0. or not i == 0:
|
||
|
# y_test_correct.append(i)
|
||
|
|
||
|
return mean_absolute_percentage_error(list(y_test), lasso_predict)
|