IIS_2023_1/romanova_adelina_lab_2/main.py

106 lines
3.5 KiB
Python
Raw Normal View History

2023-11-28 01:00:12 +04:00
from RandomizedLass import RandomizedLasso
import argparse
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler
import numpy as np
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=4, help='Кол-во самых выжных признаков')
args = parser.parse_args()
return args
def data_gen():
# --- генерируем исходные данные: 750 строк-наблюдений и 14 столбцов-признаков ---
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
#Задаем функцию-выход: регрессионную проблему Фридмана
Y = (10 * np.sin(np.pi*X[:,0]*X[:,1]) + 20*(X[:,2] - .5)**2 +
10*X[:,3] + 5*X[:,4]**5 + np.random.normal(0,1))
#Добавляем зависимость признаков
X[:,10:] = X[:,:4] + np.random.normal(0, .025, (size,4))
return X, Y
def rank_to_dict(ranks, names):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(14,1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
def print_sorted_data(ranks: dict):
print()
for key, value in ranks.items():
ranks[key] = sorted(value.items(), key=lambda item: item[1], reverse=True)
for key, value in ranks.items():
print(key)
print(value)
def estimation(ranks: dict, top_k):
#Создаем пустой список для данных
mean = {}
#«Бежим» по списку ranks
for key, value in ranks.items():
#«Пробегаемся» по списку значений ranks, которые являются парой имя:оценка
for item in value.items():
#имя будет ключом для нашего mean
#если элемента с текущим ключем в mean нет - добавляем
if (item[0] not in mean):
mean[item[0]] = 0
#суммируем значения по каждому ключу-имени признака
mean[item[0]] += item[1]
#находим среднее по каждому признаку
for key, value in mean.items():
res=value/len(ranks)
mean[key] = round(res, 2)
#сортируем и распечатываем список
mean_sorted = dict(sorted(mean.items(), key=lambda x:x[1], reverse=True))
print("sorted MEAN")
print(mean_sorted, '---'*25, sep='\n')
for item in list(mean_sorted.items())[:top_k]:
print(f'Параметр - {item[0]}, значение - {item[1]}')
print('---'*25)
if __name__=="__main__":
args = get_arguments()
X,Y = data_gen()
# Линейная модель
lr = LinearRegression()
lr.fit(X, Y)
# Рекурсивное сокращение признаков
rfe = RFE(lr)
rfe.fit(X, Y)
# Случайное Лассо
randomized_lasso = RandomizedLasso(alpha=.01)
randomized_lasso.fit(X, Y)
names = ["x%s" % i for i in range(1,15)]
ranks = {}
ranks["Linear reg"] = rank_to_dict(lr.coef_, names)
ranks["RFE"] = rank_to_dict(rfe.ranking_, names)
ranks["RandomizedLasso"] = rank_to_dict(randomized_lasso.coef_, names)
estimation(ranks, args.top_k)
print_sorted_data(ranks)