IIS_2023_1/volkov_rafael_lab_3/readme.md

43 lines
2.9 KiB
Markdown
Raw Normal View History

2023-12-05 12:27:52 +04:00
Общее задание:
Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету
«Методы искусственного интеллекта» на 99% ваших данных. Проверьте работу модели на оставшемся проценте, сделайте вывод.
Задание по вариантам:
Датасет: Board Games
Ссылки:
https://www.kaggle.com/datasets/andrewmvd/board-games
Задача для древа решений:
Классифицировать игры на игры с высокой и низкой оценкой на основе их характеристик.
Признаки:
Year Published
Users Rated
BGG Rank
Owned Users
Complexity Average
Целевая переменная: Успех игры (Высокая оценка/Низкая оценка), если Rating Average > 7.5, то высокая оценка.
Запуск через файл app.py
Технологии:
Flask: Фреймворк для веб-приложений на языке программирования Python.
Pandas: Библиотека для обработки и анализа данных.
scikit-learn: Библиотека для машинного обучения в Python.
Описание работы программы:
Программа представляет собой веб-приложение, использующее машинное обучение для классификации на основе данных об играх на сайте BoardGameGeek (BGG). Она загружает данные из CSV-файла, предобрабатывает их, обучает модель дерева решений на основе выбранных признаков (год выпуска, количество оценок пользователей, рейтинг BGG и другие), а затем предоставляет интерфейс для ввода данных о новой игре и получения предсказания о ее "успешности" (высокий или низкий рейтинг).
Входные данные:
Год выпуска игры.
Количество оценивших игру.
Рейтинг BGG игры.
Ранг BGG игры.
Количество владельцев игры.
Средняя сложность игры.
Выходные данные:
Классификация игры: "Высокая оценка" или "Низкая оценка".
Дополнительная информация: Точность модели, количество игр с высокой и низкой оценкой, важность признаков.