IIS_2023_1/sergeev_evgenii_lab_7/lab7.py

61 lines
2.0 KiB
Python
Raw Normal View History

2023-11-17 02:01:42 +04:00
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras.utils import pad_sequences
# Путь к файлу
file_path = 'vlastelin-kolec.txt'
# Замените 'your_text_file.txt' на путь к вашему файлу с художественным текстом
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in text.split('\n'):
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i+1]
input_sequences.append(n_gram_sequence)
max_sequence_length = max([len(x) for x in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')
X, y = input_sequences[:, :-1], input_sequences[:, -1]
y = tf.keras.utils.to_categorical(y, num_classes=total_words)
model = Sequential()
model.add(Embedding(total_words, 100, input_length=max_sequence_length-1))
model.add(LSTM(100))
model.add(Dense(total_words, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=100, verbose=1)
next_words = 100
while True:
seed_text = input('Введите текст: ')
if seed_text == "0":
break
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_sequence_length-1, padding='pre')
predicted = np.argmax(model.predict(token_list), axis=-1)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
print(seed_text)