IIS_2023_1/martysheva_tamara_lab_7/lab7.py

60 lines
2.3 KiB
Python
Raw Normal View History

2023-11-19 17:51:13 +04:00
import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense, Dropout
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
#Подготовка текста, получение данных для тренировки модели
def tokenize(filename):
with open(filename, encoding='utf-8') as file:
text = file.read()
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
uniq_words_amount = len(tokenizer.word_index) + 1
sequences = []
list_token = tokenizer.texts_to_sequences([text])[0]
for i in range(1, len(list_token)):
sequences.append(list_token[:i + 1])
max_seq_length = max([len(x) for x in sequences])
sequences = pad_sequences(sequences, maxlen=max_seq_length)
x, y = sequences[:, :-1], sequences[:, -1]
y = to_categorical(y, num_classes=uniq_words_amount)
return max_seq_length, uniq_words_amount, tokenizer, x, y
#Создание и тренировка модели
def train_model(max_seq_length, uniq_words_amount, x, y, epochs):
model = Sequential()
model.add(Embedding(uniq_words_amount, 128, input_length=max_seq_length-1))
model.add(LSTM(152, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(uniq_words_amount, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x, y, epochs=epochs, verbose=1)
return model
#Генерация текста
def generate_text(text, tokenizer, model, max_seq_length):
i = 0
while(i < 100):
list_token = tokenizer.texts_to_sequences([text])[0]
token_list = pad_sequences([list_token], maxlen=max_seq_length-1, padding='pre')
predict = model.predict(token_list)
predict_index = np.argmax(predict, axis=-1)
word = tokenizer.index_word.get(predict_index[0])
text += " " + word
i = i+1
return text
msl, uwa, tokenizer, x, y = tokenize("text_rus.txt")
model = train_model(msl, uwa, x, y, 140)
print("Rus: ", generate_text("Кофе со специями", tokenizer, model, msl))
msl, uwa, tokenizer, x, y = tokenize("text_eng.txt")
model = train_model(msl, uwa, x, y, 140)
print("Eng: ", generate_text("The spiced coffee", tokenizer, model, msl))