IIS_2023_1/kozlov_alexey_lab_1/lab1.py

64 lines
2.7 KiB
Python
Raw Normal View History

2024-01-12 11:28:32 +04:00
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.linear_model import LinearRegression, Ridge, Perceptron
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.datasets import make_circles
from sklearn import metrics
cm_bright = ListedColormap(['#8B0000', '#FF0000'])
cm_bright1 = ListedColormap(['#FF4500', '#FFA500'])
def create_circles():
x, y = make_circles(noise=0.2, factor=0.5, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
linear_regression(X_train, X_test, y_train, y_test)
perceptron(X_train, X_test, y_train, y_test)
ridge_regression(X_train, X_test, y_train, y_test)
def linear_regression(x_train, x_test, y_train, y_test):
model = LinearRegression().fit(x_train, y_train)
y_predict = model.intercept_ + model.coef_ * x_test
plt.title('Линейная регрессия')
print('Линейная регрессия')
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(x_test, y_predict, color='red')
print('MAE', metrics.mean_absolute_error(y_test, y_predict[:, 1]))
print('MSE', metrics.mean_squared_error(y_test, y_predict[:, 1]))
plt.show()
def perceptron(x_train, x_test, y_train, y_test):
model = Perceptron()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
plt.title('Персептрон')
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.8)
plt.plot(x_test, y_predict, color='red', linewidth=1)
plt.show()
print('Персептрон')
print('MAE', metrics.mean_absolute_error(y_test, y_predict))
print('MSE', metrics.mean_squared_error(y_test, y_predict))
def ridge_regression(X_train, X_test, y_train, y_test):
model = Pipeline([('poly', PolynomialFeatures(degree=3)), ('ridge', Ridge(alpha=1.0))])
model.fit(X_train, y_train)
y_predict = model.predict(X_test)
plt.title('Гребневая полиномиальная регрессия')
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(X_test, y_predict, color='blue')
plt.show()
print('Гребневая полиномиальная регрессия')
print('MAE', metrics.mean_absolute_error(y_test, y_predict))
print('MSE', metrics.mean_squared_error(y_test, y_predict))
create_circles()