74 lines
2.9 KiB
Python
74 lines
2.9 KiB
Python
|
from sklearn.linear_model import Ridge
|
|||
|
from sklearn.feature_selection import f_regression
|
|||
|
from sklearn.ensemble import RandomForestRegressor
|
|||
|
from sklearn.preprocessing import MinMaxScaler
|
|||
|
import numpy as np
|
|||
|
|
|||
|
# генерируем исходные данные: 750 строк-наблюдений и 14 столбцов-признаков
|
|||
|
np.random.seed(0)
|
|||
|
size = 750
|
|||
|
X = np.random.uniform(0, 1, (size, 14))
|
|||
|
# Задаем функцию-выход: регрессионную проблему Фридмана
|
|||
|
Y = (10 * np.sin(np.pi*X[:, 0]*X[:, 1]) + 20*(X[:, 2] - .5)**2 +
|
|||
|
10*X[:, 3] + 5*X[:, 4]**5 + np.random.normal(0, 1))
|
|||
|
# Добавляем зависимость признаков
|
|||
|
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
|
|||
|
|
|||
|
# Гребневая регрессия
|
|||
|
ridge = Ridge(alpha=7)
|
|||
|
ridge.fit(X, Y)
|
|||
|
# Случайные деревья
|
|||
|
rf = RandomForestRegressor(n_estimators=100, random_state=0)
|
|||
|
rf.fit(X, Y)
|
|||
|
|
|||
|
ranks = {}
|
|||
|
|
|||
|
names = ["x%s" % i for i in range(1, 15)]
|
|||
|
|
|||
|
def rank_to_dict(ranks, names):
|
|||
|
ranks = np.abs(ranks)
|
|||
|
minmax = MinMaxScaler()
|
|||
|
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
|
|||
|
ranks = map(lambda x: round(x, 2), ranks)
|
|||
|
return dict(zip(names, ranks))
|
|||
|
|
|||
|
ranks["Ridge"] = rank_to_dict(ridge.coef_, names)
|
|||
|
ranks["Random Forest"] = rank_to_dict(rf.feature_importances_, names)
|
|||
|
|
|||
|
# Вычисляем коэффициенты корреляции между признаками и целевой переменной
|
|||
|
correlation_coeffs = f_regression(X, Y)[0]
|
|||
|
|
|||
|
# Добавляем результаты корреляции в словарь ranks
|
|||
|
ranks["Correlation"] = rank_to_dict(correlation_coeffs, names)
|
|||
|
|
|||
|
# Создаем пустой словарь для данных
|
|||
|
mean = {}
|
|||
|
|
|||
|
# Бежим по словарю ranks
|
|||
|
for key, value in ranks.items():
|
|||
|
# Пробегаемся по словарю значений ranks, которые являются парой имя:оценка
|
|||
|
for item in value.items():
|
|||
|
# Имя будет ключом для нашего mean
|
|||
|
# Если элемента с текущим ключом в mean нет - добавляем
|
|||
|
if item[0] not in mean:
|
|||
|
mean[item[0]] = 0
|
|||
|
# Суммируем значения по каждому ключу-имени признака
|
|||
|
mean[item[0]] += item[1]
|
|||
|
|
|||
|
# Находим среднее по каждому признаку
|
|||
|
for key, value in mean.items():
|
|||
|
res = value / len(ranks)
|
|||
|
mean[key] = round(res, 2)
|
|||
|
|
|||
|
# Сортируем и распечатываем список
|
|||
|
mean = sorted(mean.items(), key=lambda x: x[1], reverse=True)
|
|||
|
|
|||
|
for key, value in ranks.items():
|
|||
|
ranks[key] = sorted(value.items(), key=lambda x: x[1], reverse=True)
|
|||
|
for key, value in ranks.items():
|
|||
|
print(key)
|
|||
|
print(value)
|
|||
|
|
|||
|
print("Mean Importance:")
|
|||
|
for item in mean:
|
|||
|
print(item[0], ":", item[1])
|