IIS_2023_1/volkov_rafael_lab_7/app.py

88 lines
3.0 KiB
Python
Raw Normal View History

2023-12-05 12:28:52 +04:00
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from flask import Flask, request, jsonify, render_template
def load_and_preprocess_data(file_path, seq_length=100, step=3):
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
chars = sorted(set(text))
char_to_idx = {char: idx for idx, char in enumerate(chars)}
idx_to_char = {idx: char for idx, char in enumerate(chars)}
sequences, next_chars = [], []
for i in range(0, len(text) - seq_length, step):
seq = text[i:i + seq_length]
target = text[i + seq_length]
sequences.append(seq)
next_chars.append(target)
X = np.zeros((len(sequences), seq_length), dtype=np.int32)
y = np.zeros((len(sequences),), dtype=np.int32)
for i, seq in enumerate(sequences):
for t, char in enumerate(seq):
X[i, t] = char_to_idx[char]
y[i] = char_to_idx[next_chars[i]]
return X, y, len(chars), char_to_idx, idx_to_char
def build_model(seq_length, num_chars):
model = Sequential([
Embedding(num_chars, 50, input_length=seq_length),
LSTM(128),
Dense(num_chars, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
return model
def train_model(model, X, y, epochs=100, batch_size=128):
model.fit(X, y, epochs=epochs, batch_size=batch_size)
def generate_text(seed_text, model, seq_length, char_to_idx, idx_to_char, length=100, temperature=1.0):
generated_text = seed_text
for _ in range(length):
x = np.zeros((1, seq_length), dtype=np.int32)
for t, char in enumerate(seed_text):
x[0, t] = char_to_idx[char]
preds = model.predict(x, verbose=0)[0][-1]
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
next_index = np.random.choice(len(preds), p=preds)
next_char = idx_to_char[next_index]
generated_text += next_char
seed_text = seed_text[1:] + next_char
return generated_text
def create_flask_app(model, seq_length, char_to_idx, idx_to_char):
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/generate_text', methods=['POST'])
def generate_text_endpoint():
data = request.get_json()
seed_text = data.get('seed_text', '')
generated_text = generate_text(seed_text, model, seq_length, char_to_idx, idx_to_char)
return jsonify({'generated_text': generated_text})
return app
if __name__ == '__main__':
file_path = 'your_text_file.txt'
X, y, num_chars, char_to_idx, idx_to_char = load_and_preprocess_data(file_path)
seq_length = 100
model = build_model(seq_length, num_chars)
train_model(model, X, y, epochs=100, batch_size=128)
flask_app = create_flask_app(model, seq_length, char_to_idx, idx_to_char)
flask_app.run(port=5000)