26 lines
1.6 KiB
Markdown
26 lines
1.6 KiB
Markdown
|
## Лабораторная работа №4
|
|||
|
|
|||
|
### Ранжирование признаков
|
|||
|
|
|||
|
## ПИбд-41 Абанин Даниил
|
|||
|
|
|||
|
### Как запустить лабораторную работу:
|
|||
|
|
|||
|
* установить python, pandas, matplotlib, scipy
|
|||
|
* запустить проект (стартовая точка lab4)
|
|||
|
|
|||
|
### Какие технологии использовались:
|
|||
|
|
|||
|
* Язык программирования `Python`, библиотеки pandas, matplotlib, scipy
|
|||
|
* Среда разработки `PyCharm`
|
|||
|
|
|||
|
### Что делает лабораторная работа:
|
|||
|
Программа читает данные из csv файла. На основе имеющейся информации кластеризует заявителей на различные группы по риску выдачи кредита.
|
|||
|
При кластеризации используются такие признаки, как: ApplicantIncome - доход заявителя, LoanAmount - сумма займа в тысячах, Credit_History -
|
|||
|
статус кредитной истории заявителя (соответствие рекомендациям), Self_Employed - самозанятость (Да/Нет), Education - наличие образования
|
|||
|
|
|||
|
### Тест
|
|||
|
|
|||
|
![Result](result.png)
|
|||
|
|
|||
|
По результатам кластеризации дендрограммой видно, что было проведено эффективное разбиение данных. На диаграмме показаны различные группы заявителей по рискам выдачи кредита
|