2023-09-19 10:19:50 +04:00
|
|
|
import random
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
from matplotlib.colors import ListedColormap
|
|
|
|
from sklearn.datasets import make_moons
|
|
|
|
from sklearn.linear_model import LinearRegression, Ridge
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from sklearn.preprocessing import PolynomialFeatures
|
|
|
|
from sklearn.pipeline import Pipeline
|
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
rs = random.randrange(50)
|
2023-09-19 10:19:50 +04:00
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
X, y = make_moons(n_samples=250, noise=0.3, random_state=rs)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
|
2023-09-19 10:19:50 +04:00
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
figure = plt.figure(1, figsize=(16, 9))
|
|
|
|
axis = figure.subplots(4, 3)
|
|
|
|
cm = ListedColormap(['#FF0000', "#0000FF"])
|
|
|
|
arr_res = list(range(len(y_test)))
|
|
|
|
X_scale = list(range(len(y_test)))
|
2023-09-19 10:19:50 +04:00
|
|
|
|
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
def test(col, model):
|
|
|
|
global axis
|
|
|
|
global arr_res
|
|
|
|
global X_test
|
|
|
|
global X_train
|
|
|
|
global y_train
|
|
|
|
global y_test
|
2023-09-19 10:19:50 +04:00
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
model.fit(X_train, y_train)
|
|
|
|
res_y = model.predict(X_test)
|
|
|
|
print(model.score(X_test, y_test))
|
2023-09-19 10:19:50 +04:00
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
axis[0, col].scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm)
|
|
|
|
axis[1, col].scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm)
|
|
|
|
axis[2, col].scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm)
|
|
|
|
axis[2, col].scatter(X_test[:, 0], X_test[:, 1], c=res_y, cmap=cm)
|
|
|
|
axis[3, col].plot([i for i in range(len(res_y))], y_test, c="g")
|
|
|
|
axis[3, col].plot([i for i in range(len(res_y))], res_y, c="r")
|
2023-09-19 10:19:50 +04:00
|
|
|
|
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
def start():
|
|
|
|
lin = LinearRegression()
|
|
|
|
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
|
|
|
|
('linear', LinearRegression())])
|
|
|
|
ridge = Pipeline([('poly', PolynomialFeatures(degree=3)),
|
|
|
|
('ridge', Ridge(alpha=1.0))])
|
2023-09-19 10:19:50 +04:00
|
|
|
|
2023-09-21 20:19:20 +04:00
|
|
|
test(0, lin)
|
|
|
|
test(1, poly)
|
|
|
|
test(2, ridge)
|
2023-09-19 10:19:50 +04:00
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
start()
|